These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 24376670)
1. In vitro activity of the antifungal azoles itraconazole and posaconazole against Leishmania amazonensis. de Macedo-Silva ST; Urbina JA; de Souza W; Rodrigues JC PLoS One; 2013; 8(12):e83247. PubMed ID: 24376670 [TBL] [Abstract][Full Text] [Related]
2. Potent In Vitro Antiproliferative Synergism of Combinations of Ergosterol Biosynthesis Inhibitors against Leishmania amazonensis. de Macedo-Silva ST; Visbal G; Urbina JA; de Souza W; Rodrigues JC Antimicrob Agents Chemother; 2015 Oct; 59(10):6402-18. PubMed ID: 26239973 [TBL] [Abstract][Full Text] [Related]
3. In vitro antileishmanial activity of ravuconazole, a triazole antifungal drug, as a potential treatment for leishmaniasis. Teixeira de Macedo Silva S; Visbal G; Lima Prado Godinho J; Urbina JA; de Souza W; Cola Fernandes Rodrigues J J Antimicrob Chemother; 2018 Sep; 73(9):2360-2373. PubMed ID: 29982734 [TBL] [Abstract][Full Text] [Related]
4. A novel alkyl phosphocholine-dinitroaniline hybrid molecule exhibits biological activity in vitro against Leishmania amazonensis. Godinho JL; Georgikopoulou K; Calogeropoulou T; de Souza W; Rodrigues JC Exp Parasitol; 2013 Sep; 135(1):153-65. PubMed ID: 23845259 [TBL] [Abstract][Full Text] [Related]
5. Antiproliferative and ultrastructural effects of BPQ-OH, a specific inhibitor of squalene synthase, on Leishmania amazonensis. Rodrigues JC; Urbina JA; de Souza W Exp Parasitol; 2005 Dec; 111(4):230-8. PubMed ID: 16198340 [TBL] [Abstract][Full Text] [Related]
6. In vitro activities of ER-119884 and E5700, two potent squalene synthase inhibitors, against Leishmania amazonensis: antiproliferative, biochemical, and ultrastructural effects. Fernandes Rodrigues JC; Concepcion JL; Rodrigues C; Caldera A; Urbina JA; de Souza W Antimicrob Agents Chemother; 2008 Nov; 52(11):4098-114. PubMed ID: 18765694 [TBL] [Abstract][Full Text] [Related]
7. Mitochondrial damage contribute to epigallocatechin-3-gallate induced death in Leishmania amazonensis. Inacio JD; Canto-Cavalheiro MM; Menna-Barreto RF; Almeida-Amaral EE Exp Parasitol; 2012 Oct; 132(2):151-5. PubMed ID: 22735546 [TBL] [Abstract][Full Text] [Related]
8. Naturally azole-resistant Leishmania braziliensis promastigotes are rendered susceptible in the presence of terbinafine: comparative study with azole-susceptible Leishmania mexicana promastigotes. Rangel H; Dagger F; Hernandez A; Liendo A; Urbina JA Antimicrob Agents Chemother; 1996 Dec; 40(12):2785-91. PubMed ID: 9124841 [TBL] [Abstract][Full Text] [Related]
9. The stepwise selection for ketoconazole resistance induces upregulation of C14-demethylase (CYP51) in Leishmania amazonensis. Andrade-Neto VV; Matos-Guedes HL; Gomes DC; Canto-Cavalheiro MM; Rossi-Bergmann B; Torres-Santos EC Mem Inst Oswaldo Cruz; 2012 May; 107(3):416-9. PubMed ID: 22510839 [TBL] [Abstract][Full Text] [Related]
10. Squalene synthase as a chemotherapeutic target in Trypanosoma cruzi and Leishmania mexicana. Urbina JA; Concepcion JL; Rangel S; Visbal G; Lira R Mol Biochem Parasitol; 2002; 125(1-2):35-45. PubMed ID: 12467972 [TBL] [Abstract][Full Text] [Related]
11. Studies on the antileishmanial mechanism of action of the arylimidamide DB766: azole interactions and role of CYP5122A1. Pandharkar T; Zhu X; Mathur R; Jiang J; Schmittgen TD; Shaha C; Werbovetz KA Antimicrob Agents Chemother; 2014 Aug; 58(8):4682-9. PubMed ID: 24890590 [TBL] [Abstract][Full Text] [Related]
12. Effects of antimycotic azoles on growth and sterol biosynthesis of Leishmania promastigotes. Beach DH; Goad LJ; Holz GG Mol Biochem Parasitol; 1988 Nov; 31(2):149-62. PubMed ID: 2847043 [TBL] [Abstract][Full Text] [Related]
13. Sterol 14alpha-demethylase (CYP51) as a therapeutic target for human trypanosomiasis and leishmaniasis. Lepesheva GI; Waterman MR Curr Top Med Chem; 2011; 11(16):2060-71. PubMed ID: 21619513 [TBL] [Abstract][Full Text] [Related]
14. In vitro evaluation of (-)α-bisabolol as a promising agent against Leishmania amazonensis. Rottini MM; Amaral AC; Ferreira JL; Silva JR; Taniwaki NN; Souza Cda S; d'Escoffier LN; Almeida-Souza F; Hardoim Dde J; Gonçalves da Costa SC; Calabrese Kda S Exp Parasitol; 2015 Jan; 148():66-72. PubMed ID: 25448354 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and Biological Activity of Novel Zinc-Itraconazole Complexes in Protozoan Parasites and Azevedo-França JA; Granado R; de Macedo Silva ST; Santos-Silva GD; Scapin S; Borba-Santos LP; Rozental S; de Souza W; Martins-Duarte ÉS; Barrias E; Rodrigues JCF; Navarro M Antimicrob Agents Chemother; 2020 Apr; 64(5):. PubMed ID: 32152072 [TBL] [Abstract][Full Text] [Related]
16. Sterol profiling of Leishmania parasites using a new HPLC-tandem mass spectrometry-based method and antifungal azoles as chemical probes reveals a key intermediate sterol that supports a branched ergosterol biosynthetic pathway. Feng M; Jin Y; Yang S; Joachim AM; Ning Y; Mori-Quiroz LM; Fromm J; Perera C; Zhang K; Werbovetz KA; Wang MZ Int J Parasitol Drugs Drug Resist; 2022 Dec; 20():27-42. PubMed ID: 35994895 [TBL] [Abstract][Full Text] [Related]
17. Novel functionalized 1,2,3-triazole derivatives exhibit antileishmanial activity, increase in total and mitochondrial-ROS and depolarization of mitochondrial membrane potential of Leishmania amazonensis. Meinel RS; Almeida ADC; Stroppa PHF; Glanzmann N; Coimbra ES; da Silva AD Chem Biol Interact; 2020 Jan; 315():108850. PubMed ID: 31634447 [TBL] [Abstract][Full Text] [Related]