These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24376676)

  • 21. A novel gene network inference algorithm using predictive minimum description length approach.
    Chaitankar V; Ghosh P; Perkins EJ; Gong P; Deng Y; Zhang C
    BMC Syst Biol; 2010 May; 4 Suppl 1(Suppl 1):S7. PubMed ID: 20522257
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Construction of regulatory networks using expression time-series data of a genotyped population.
    Yeung KY; Dombek KM; Lo K; Mittler JE; Zhu J; Schadt EE; Bumgarner RE; Raftery AE
    Proc Natl Acad Sci U S A; 2011 Nov; 108(48):19436-41. PubMed ID: 22084118
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reverse engineering genetic networks using nonlinear saturation kinetics.
    Kizhakkethil Youseph AS; Chetty M; Karmakar G
    Biosystems; 2019 Aug; 182():30-41. PubMed ID: 31185246
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks.
    Nariai N; Kim S; Imoto S; Miyano S
    Pac Symp Biocomput; 2004; ():336-47. PubMed ID: 14992515
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inferring orthologous gene regulatory networks using interspecies data fusion.
    Penfold CA; Millar JB; Wild DL
    Bioinformatics; 2015 Jun; 31(12):i97-105. PubMed ID: 26072515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative utilization of prior biological knowledge in the Bayesian network modeling of gene expression data.
    Gao S; Wang X
    BMC Bioinformatics; 2011 Aug; 12():359. PubMed ID: 21884587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inference of differential gene regulatory networks based on gene expression and genetic perturbation data.
    Zhou X; Cai X
    Bioinformatics; 2020 Jan; 36(1):197-204. PubMed ID: 31263873
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reverse engineering directed gene regulatory networks from transcriptomics and proteomics data of biomining bacterial communities with approximate Bayesian computation and steady-state signalling simulations.
    Buetti-Dinh A; Herold M; Christel S; El Hajjami M; Delogu F; Ilie O; Bellenberg S; Wilmes P; Poetsch A; Sand W; Vera M; Pivkin IV; Friedman R; Dopson M
    BMC Bioinformatics; 2020 Jan; 21(1):23. PubMed ID: 31964336
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discrete dynamical system modelling for gene regulatory networks of 5-hydroxymethylfurfural tolerance for ethanologenic yeast.
    Song M; Ouyang Z; Liu ZL
    IET Syst Biol; 2009 May; 3(3):203-18. PubMed ID: 19449980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Growing seed genes from time series data and thresholded Boolean networks with perturbation.
    Higa CH; Andrade TP; Hashimoto RF
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(1):37-49. PubMed ID: 23702542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Topological basis of signal integration in the transcriptional-regulatory network of the yeast, Saccharomyces cerevisiae.
    Farkas IJ; Wu C; Chennubhotla C; Bahar I; Oltvai ZN
    BMC Bioinformatics; 2006 Oct; 7():478. PubMed ID: 17069658
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Approximate inference of gene regulatory network models from RNA-Seq time series data.
    Thorne T
    BMC Bioinformatics; 2018 Apr; 19(1):127. PubMed ID: 29642837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An efficient data assimilation schema for restoration and extension of gene regulatory networks using time-course observation data.
    Hasegawa T; Mori T; Yamaguchi R; Imoto S; Miyano S; Akutsu T
    J Comput Biol; 2014 Nov; 21(11):785-98. PubMed ID: 25244077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network.
    Imoto S; Kim S; Goto T; Miyano S; Aburatani S; Tashiro K; Kuhara S
    J Bioinform Comput Biol; 2003 Jul; 1(2):231-52. PubMed ID: 15290771
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inference of gene networks from gene expression time series using recurrent neural networks and sparse MAP estimation.
    Chen CK
    J Bioinform Comput Biol; 2018 Aug; 16(4):1850009. PubMed ID: 30051742
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fitting Boolean networks from steady state perturbation data.
    Almudevar A; McCall MN; McMurray H; Land H
    Stat Appl Genet Mol Biol; 2011 Oct; 10(1):. PubMed ID: 23089817
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational reconstruction of transcriptional regulatory modules of the yeast cell cycle.
    Wu WS; Li WH; Chen BS
    BMC Bioinformatics; 2006 Sep; 7():421. PubMed ID: 17010188
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discovering time-lagged rules from microarray data using gene profile classifiers.
    Gallo CA; Carballido JA; Ponzoni I
    BMC Bioinformatics; 2011 Apr; 12():123. PubMed ID: 21524308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using gene expression programming to infer gene regulatory networks from time-series data.
    Zhang Y; Pu Y; Zhang H; Su Y; Zhang L; Zhou J
    Comput Biol Chem; 2013 Dec; 47():198-206. PubMed ID: 24140883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.