These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 2437720)

  • 41. In vitro transcription and translation of genomic RNA from a porcine group C rotavirus.
    Jiang BM; Saif LJ
    Arch Virol; 1992; 124(1-2):181-5. PubMed ID: 1315134
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mature Rotavirus Particles Contain Equivalent Amounts of
    Moreno-Contreras J; Sánchez-Tacuba L; Arias CF; López S
    J Virol; 2022 Sep; 96(17):e0115122. PubMed ID: 36000838
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Completion of the gene coding assignments of SA11 rotavirus: gene products of segments 7, 8, and 9.
    Kantharidis P; Dyall-Smith ML; Holmes IH
    J Virol; 1983 Oct; 48(1):330-4. PubMed ID: 6310157
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Soluble, template-dependent extracts from Nicotiana benthamiana plants infected with potato virus X transcribe both plus- and minus-strand RNA templates.
    Plante CA; Kim KH; Pillai-Nair N; Osman TA; Buck KW; Hemenway CL
    Virology; 2000 Sep; 275(2):444-51. PubMed ID: 10998342
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unique double-stranded RNAs associated with the Trichomonas vaginalis virus are synthesized by viral RNA-dependent RNA polymerase.
    Khoshnan A; Provenzano D; Alderete JF
    J Virol; 1994 Nov; 68(11):7108-14. PubMed ID: 7933092
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Detection of bacteriophage phi 6 minus-strand RNA and novel mRNA isoconformers synthesized in vivo and in vitro, by strand-separating agarose gels.
    Pagratis N; Revel HR
    Virology; 1990 Jul; 177(1):273-80. PubMed ID: 2353455
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Heterogeneity in the genome RNAs and polypeptides of five members of a novel group of rotavirus-like viruses isolated from aquatic animals.
    Samal SK; Dopazo CP; Subramanian K; Lupiani B; Mohanty SB; Hetrick FM
    J Gen Virol; 1991 Jan; 72 ( Pt 1)():181-4. PubMed ID: 1846647
    [TBL] [Abstract][Full Text] [Related]  

  • 48. RNA interference of rotavirus segment 11 mRNA reveals the essential role of NSP5 in the virus replicative cycle.
    Campagna M; Eichwald C; Vascotto F; Burrone OR
    J Gen Virol; 2005 May; 86(Pt 5):1481-1487. PubMed ID: 15831961
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vitro replication and transcription of the segmented double-stranded RNA bacteriophage phi 6.
    Ewen ME; Revel HR
    Virology; 1988 Aug; 165(2):489-98. PubMed ID: 3407151
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rotavirus morphogenesis: domains in the major inner capsid protein essential for binding to single-shelled particles and for trimerization.
    Clapp LL; Patton JT
    Virology; 1991 Feb; 180(2):697-708. PubMed ID: 1846494
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rotavirus VP1 alone specifically binds to the 3' end of viral mRNA, but the interaction is not sufficient to initiate minus-strand synthesis.
    Patton JT
    J Virol; 1996 Nov; 70(11):7940-7. PubMed ID: 8892917
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Assignment of simian rotavirus SA11 temperature-sensitive mutant groups B and E to genome segments.
    Gombold JL; Estes MK; Ramig RF
    Virology; 1985 May; 143(1):309-20. PubMed ID: 2998007
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reconstitution of template-dependent in vitro transcriptase activity of a yeast double-stranded RNA virus.
    Fujimura T; Wickner RB
    J Biol Chem; 1989 Jun; 264(18):10872-7. PubMed ID: 2659596
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Differentiation between minus- and plus-strand synthesis: polymerase activity of dsRNA bacteriophage phi 6 in an in vitro packaging and replication system.
    van Dijk AA; Frilander M; Bamford DH
    Virology; 1995 Aug; 211(1):320-3. PubMed ID: 7645229
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Template recognition and formation of initiation complexes by the replicase of a segmented double-stranded RNA virus.
    Tortorici MA; Broering TJ; Nibert ML; Patton JT
    J Biol Chem; 2003 Aug; 278(35):32673-82. PubMed ID: 12788926
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Membrane-associated replication of an unencapsidated double-strand RNA of the fungus, Cryphonectria parasitica.
    Fahima T; Kazmierczak P; Hansen DR; Pfeiffer P; Van Alfen NK
    Virology; 1993 Jul; 195(1):81-9. PubMed ID: 8317109
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The rotavirus RNA-binding protein NS35 (NSP2) forms 10S multimers and interacts with the viral RNA polymerase.
    Kattoura MD; Chen X; Patton JT
    Virology; 1994 Aug; 202(2):803-13. PubMed ID: 8030243
    [TBL] [Abstract][Full Text] [Related]  

  • 58. RNA-binding proteins of bovine rotavirus.
    Boyle JF; Holmes KV
    J Virol; 1986 May; 58(2):561-8. PubMed ID: 2422396
    [TBL] [Abstract][Full Text] [Related]  

  • 59. NSP5 phosphorylation regulates the fate of viral mRNA in rotavirus infected cells.
    Chnaiderman J; Barro M; Spencer E
    Arch Virol; 2002 Oct; 147(10):1899-911. PubMed ID: 12376752
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification, synthesis, and modifications of simian rotavirus SA11 polypeptides in infected cells.
    Ericson BL; Graham DY; Mason BB; Estes MK
    J Virol; 1982 Jun; 42(3):825-39. PubMed ID: 6284998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.