These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Effect of structure variation of the aptamer-DNA duplex probe on the performance of displacement-based electrochemical aptamer sensors. Pang J; Zhang Z; Jin H Biosens Bioelectron; 2016 Mar; 77():174-81. PubMed ID: 26406458 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical current rectification-a novel signal amplification strategy for highly sensitive and selective aptamer-based biosensor. Feng L; Sivanesan A; Lyu Z; Offenhäusser A; Mayer D Biosens Bioelectron; 2015 Apr; 66():62-8. PubMed ID: 25460883 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical detection of tobramycin based on enzymes-assisted dual signal amplification by using a novel truncated aptamer with high affinity. Nie J; Yuan L; Jin K; Han X; Tian Y; Zhou N Biosens Bioelectron; 2018 Dec; 122():254-262. PubMed ID: 30268963 [TBL] [Abstract][Full Text] [Related]
6. Rationally designing aptamer sequences with reduced affinity for controlled sensor performance. Schoukroun-Barnes LR; White RJ Sensors (Basel); 2015 Mar; 15(4):7754-67. PubMed ID: 25835184 [TBL] [Abstract][Full Text] [Related]
7. Analyte-driven switching of DNA charge transport: de novo creation of electronic sensors for an early lung cancer biomarker. Thomas JM; Chakraborty B; Sen D; Yu HZ J Am Chem Soc; 2012 Aug; 134(33):13823-33. PubMed ID: 22835075 [TBL] [Abstract][Full Text] [Related]
9. Sensitive label-free electrochemical analysis of human IgE using an aptasensor with cDNA amplification. Lee CY; Wu KY; Su HL; Hung HY; Hsieh YZ Biosens Bioelectron; 2013 Jan; 39(1):133-8. PubMed ID: 22883750 [TBL] [Abstract][Full Text] [Related]
10. Enhancing the response rate of strand displacement-based electrochemical aptamer sensors using bivalent binding aptamer-cDNA probes. Zhang Z; Tao C; Yin J; Wang Y; Li Y Biosens Bioelectron; 2018 Apr; 103():39-44. PubMed ID: 29278811 [TBL] [Abstract][Full Text] [Related]
11. Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules. Cheng AK; Sen D; Yu HZ Bioelectrochemistry; 2009 Nov; 77(1):1-12. PubMed ID: 19473883 [TBL] [Abstract][Full Text] [Related]
12. Rapid Two-Millisecond Interrogation of Electrochemical, Aptamer-Based Sensor Response Using Intermittent Pulse Amperometry. Santos-Cancel M; Lazenby RA; White RJ ACS Sens; 2018 Jun; 3(6):1203-1209. PubMed ID: 29762016 [TBL] [Abstract][Full Text] [Related]
13. An electrochemical aptamer-based sensor prepared by utilizing the strong interaction between a DNA aptamer and diamond. Asai K; Yamamoto T; Nagashima S; Ogata G; Hibino H; Einaga Y Analyst; 2020 Jan; 145(2):544-549. PubMed ID: 31764923 [TBL] [Abstract][Full Text] [Related]
14. Sensitive analytical performance of folding based biosensor using methylene blue tagged aptamers. Catanante G; Mishra RK; Hayat A; Marty JL Talanta; 2016 Jun; 153():138-44. PubMed ID: 27130100 [TBL] [Abstract][Full Text] [Related]
15. Lengthening the aptamer to hybridize with a stem-loop DNA assistant probe for the electrochemical detection of kanamycin with improved sensitivity. Yu Z; Han X; Li F; Tan X; Shi W; Fu C; Yan H; Zhang G Anal Bioanal Chem; 2020 Apr; 412(11):2391-2397. PubMed ID: 32076786 [TBL] [Abstract][Full Text] [Related]
16. Aptamer-based electrochemical sensors that are not based on the target binding-induced conformational change of aptamers. Lu Y; Zhu N; Yu P; Mao L Analyst; 2008 Sep; 133(9):1256-60. PubMed ID: 18709204 [TBL] [Abstract][Full Text] [Related]
17. Re-engineering aptamers to support reagentless, self-reporting electrochemical sensors. White RJ; Rowe AA; Plaxco KW Analyst; 2010 Mar; 135(3):589-94. PubMed ID: 20174715 [TBL] [Abstract][Full Text] [Related]
18. DNA nanostructure-decorated surfaces for enhanced aptamer-target binding and electrochemical cocaine sensors. Wen Y; Pei H; Wan Y; Su Y; Huang Q; Song S; Fan C Anal Chem; 2011 Oct; 83(19):7418-23. PubMed ID: 21853985 [TBL] [Abstract][Full Text] [Related]
19. Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing. Xiao Y; Lai RY; Plaxco KW Nat Protoc; 2007; 2(11):2875-80. PubMed ID: 18007622 [TBL] [Abstract][Full Text] [Related]
20. "Fitting" makes "sensing" simple: label-free detection strategies based on nucleic acid aptamers. Du Y; Li B; Wang E Acc Chem Res; 2013 Feb; 46(2):203-13. PubMed ID: 23214491 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]