These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 24377325)

  • 1. Colloid-facilitated mobilization of metals by freeze-thaw cycles.
    Mohanty SK; Saiers JE; Ryan JN
    Environ Sci Technol; 2014 Jan; 48(2):977-84. PubMed ID: 24377325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freeze-thaw cycles lead to enhanced colloid-facilitated Pb transport in a Chernozem soil.
    Wang Z; Zhang Y; Flury M; Zou H
    J Contam Hydrol; 2022 Dec; 251():104093. PubMed ID: 36265266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloid Mobilization in a Fractured Soil during Dry-Wet Cycles: Role of Drying Duration and Flow Path Permeability.
    Mohanty SK; Saiers JE; Ryan JN
    Environ Sci Technol; 2015 Aug; 49(15):9100-6. PubMed ID: 26134351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colloid-facilitated mobilization of cadmium: Comparison of spring freeze-thaw event and autumn freeze-thaw event.
    Hu NW; Yu HW; Wang QR; Zhu GP; Yang XT; Wang TY; Wang Y; Wang QY
    Sci Total Environ; 2022 Dec; 852():158467. PubMed ID: 36057305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophobicity of soil colloids and heavy metal mobilization: effects of drying.
    Klitzke S; Lang F
    J Environ Qual; 2007; 36(4):1187-93. PubMed ID: 17596628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloid Mobilization in a Fractured Soil: Effect of Pore-Water Exchange between Preferential Flow Paths and Soil Matrix.
    Mohanty SK; Saiers JE; Ryan JN
    Environ Sci Technol; 2016 Mar; 50(5):2310-7. PubMed ID: 26829659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of a controlled freeze-thaw event on dissolved and colloidal soil organic matter.
    Kim EA; Lee HK; Choi JH
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1338-1346. PubMed ID: 27774566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colloid-facilitated transport of cesium in vadose-zone sediments: the importance of flow transients.
    Cheng T; Saiers JE
    Environ Sci Technol; 2010 Oct; 44(19):7443-9. PubMed ID: 20812714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of freezing-thawing and wetting-drying on heavy metal leaching from biosolids.
    Wang Z; Flury M
    Water Environ Res; 2019 Jun; 91(6):465-474. PubMed ID: 30791144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Adsorption and Desorption of Pb(2+) and Cd(2+) in Freeze-Thaw Treated Soils.
    Li L; Ma J; Xu M; Li X; Tao J; Wang G; Yu J; Guo P
    Bull Environ Contam Toxicol; 2016 Jan; 96(1):107-12. PubMed ID: 26644028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Dynamic change of dissolved iron in wetland soil solutions responding to freeze-thaw cycles].
    Yu XF; Wang GP; Lü XG; Zou YC; Jiang M
    Huan Jing Ke Xue; 2010 May; 31(5):1387-94. PubMed ID: 20623881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of freeze-thaw cycles on distribution and speciation of heavy metals in pig manure.
    An S; Zhang F; Chen X; Gao M; Zhang X; Hu B; Li Y
    Environ Sci Pollut Res Int; 2020 Mar; 27(8):8082-8090. PubMed ID: 31897986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant-microbe competition for soil amino acids in the alpine tundra: effects of freeze-thaw and dry-rewet events.
    Lipson DA; Monson RK
    Oecologia; 1998 Jan; 113(3):406-414. PubMed ID: 28307826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of microplastics in stormwater treatment systems under freeze-thaw cycles: Critical role of plastic density.
    Koutnik VS; Leonard J; Brar J; Cao S; Glasman JB; Cowger W; Ravi S; Mohanty SK
    Water Res; 2022 Aug; 222():118950. PubMed ID: 35964509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repeated freezing induces oxidative stress and reduces survival in the freeze-tolerant goldenrod gall fly, Eurosta solidaginis.
    Doelling AR; Griffis N; Williams JB
    J Insect Physiol; 2014 Aug; 67():20-7. PubMed ID: 24910457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of freeze-thaw cycles pretreatment on the vacuum freeze-drying process and physicochemical properties of the dried garlic slices.
    Feng Y; Ping Tan C; Zhou C; Yagoub AEA; Xu B; Sun Y; Ma H; Xu X; Yu X
    Food Chem; 2020 Sep; 324():126883. PubMed ID: 32344350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GMCs stabilized/solidified Pb/Zn contaminated soil under different curing temperature: leachability and durability.
    Wang F; Zhang Y; Shen Z; Pan H; Xu J; Al-Tabbaa A
    Environ Sci Pollut Res Int; 2019 Sep; 26(26):26963-26971. PubMed ID: 31309424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Xanthan-Curdlan Hydrogel Complex on Freeze-Thaw Stability and Rheological Properties of Whey Protein Isolate Gel over Multiple Freeze-Thaw Cycle.
    Shiroodi SG; Rasco BA; Lo YM
    J Food Sci; 2015 Jul; 80(7):E1498-505. PubMed ID: 26012512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influences of Land Use/Cover Types on Nitrous Oxide Emissions during Freeze-Thaw Periods from Waterlogged Soils in Inner Mongolia.
    Lu Z; Du R; Du P; Qin S; Liang Z; Li Z; Wang Y; Wang Y
    PLoS One; 2015; 10(9):e0139316. PubMed ID: 26407303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental study on remediation of petroleum-contaminated soil by combination of freeze-thaw and electro-osmosis.
    Yang S; Zhang H; Hu Y; Jin H; Hu J; Li H; Lu M
    Environ Pollut; 2023 Sep; 333():121989. PubMed ID: 37301452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.