These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
463 related articles for article (PubMed ID: 24377365)
21. Enhanced production of 3-hydroxypropionic acid from glucose via malonyl-CoA pathway by engineered Escherichia coli. Cheng Z; Jiang J; Wu H; Li Z; Ye Q Bioresour Technol; 2016 Jan; 200():897-904. PubMed ID: 26606325 [TBL] [Abstract][Full Text] [Related]
22. Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1. Shi S; Chen Y; Siewers V; Nielsen J mBio; 2014 May; 5(3):e01130-14. PubMed ID: 24803522 [TBL] [Abstract][Full Text] [Related]
23. [Formation of mevalonic acid, sterols and bile acids from [1-14C]acetyl-CoA and [2-14C]malonyl-CoA in the liver of rabbits with experimental hypercholesterolemia]. Klimov AN; Poliakova ED; Vasil'eva LE; Denisenko TV; Dizhe EB Biokhimiia; 1987 Feb; 52(2):239-46. PubMed ID: 2882784 [TBL] [Abstract][Full Text] [Related]
24. A Sense of Balance: Experimental Investigation and Modeling of a Malonyl-CoA Sensor in Escherichia coli. Fehér T; Libis V; Carbonell P; Faulon JL Front Bioeng Biotechnol; 2015; 3():46. PubMed ID: 25905101 [TBL] [Abstract][Full Text] [Related]
32. Enhancement of fatty acid biosynthesis by exogenous acetyl-CoA carboxylase and pantothenate kinase in Escherichia coli. Satoh S; Ozaki M; Matsumoto S; Nabatame T; Kaku M; Shudo T; Asayama M; Chohnan S Biotechnol Lett; 2020 Dec; 42(12):2595-2605. PubMed ID: 32902709 [TBL] [Abstract][Full Text] [Related]
33. Engineered dynamic distribution of malonyl-CoA flux for improving polyketide biosynthesis in Komagataella phaffii. Wen J; Tian L; Liu Q; Zhang Y; Cai M J Biotechnol; 2020 Aug; 320():80-85. PubMed ID: 32574793 [TBL] [Abstract][Full Text] [Related]
34. Increased sesqui- and triterpene production by co-expression of HMG-CoA reductase and biotin carboxyl carrier protein in tobacco (Nicotiana benthamiana). Lee AR; Kwon M; Kang MK; Kim J; Kim SU; Ro DK Metab Eng; 2019 Mar; 52():20-28. PubMed ID: 30389612 [TBL] [Abstract][Full Text] [Related]
35. Pleiotropic phenotype of acetyl-CoA-carboxylase-defective yeast cells--viability of a BPL1-amber mutation depending on its readthrough by normal tRNA(Gln)(CAG). Hoja U; Wellein C; Greiner E; Schweizer E Eur J Biochem; 1998 Jun; 254(3):520-6. PubMed ID: 9688262 [TBL] [Abstract][Full Text] [Related]
36. Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. Davis MS; Solbiati J; Cronan JE J Biol Chem; 2000 Sep; 275(37):28593-8. PubMed ID: 10893421 [TBL] [Abstract][Full Text] [Related]
37. AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats. Assifi MM; Suchankova G; Constant S; Prentki M; Saha AK; Ruderman NB Am J Physiol Endocrinol Metab; 2005 Nov; 289(5):E794-800. PubMed ID: 15956049 [TBL] [Abstract][Full Text] [Related]
38. [Biosynthesis of cholic and chenodeoxycholic acids from [1-14C]acetyl-CoA and [2-14C]malonyl-CoA in a reconstituted system from the rat liver]. Poliakova ED; Vasil'eva LE; Denisenko TV; Dizhe EB; Klimova TA; Petrova LA; Klimov AN Biokhimiia; 1981 Mar; 46(3):462-72. PubMed ID: 7236804 [TBL] [Abstract][Full Text] [Related]
39. Modulation of the central carbon metabolism of Corynebacterium glutamicum improves malonyl-CoA availability and increases plant polyphenol synthesis. Milke L; Ferreira P; Kallscheuer N; Braga A; Vogt M; Kappelmann J; Oliveira J; Silva AR; Rocha I; Bott M; Noack S; Faria N; Marienhagen J Biotechnol Bioeng; 2019 Jun; 116(6):1380-1391. PubMed ID: 30684355 [TBL] [Abstract][Full Text] [Related]