These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 24377381)

  • 1. Catalytic reduction of hydrazine to ammonia by a mononuclear iron(II) complex on a tris(thiolato)phosphine platform.
    Chang YH; Chan PM; Tsai YF; Lee GH; Hsu HF
    Inorg Chem; 2014 Jan; 53(2):664-6. PubMed ID: 24377381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic reduction of hydrazine to ammonia by a vanadium thiolate complex.
    Chu WC; Wu CC; Hsu HF
    Inorg Chem; 2006 Apr; 45(8):3164-6. PubMed ID: 16602772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactivity of a Fe(III)-Bound Methoxide Supported with a Tris(thiolato)phosphine Ligand: Activation of C-Cl Bond in CH2Cl2 by Nucleophilic Attack of a Fe(III)-OCH3 Moiety.
    Chang KC; Huang CJ; Chang YH; Wu ZH; Kuo TS; Hsu HF
    Inorg Chem; 2016 Jan; 55(2):566-72. PubMed ID: 26699874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Fe-N₂ Complex That Generates Hydrazine and Ammonia via Fe═NNH₂: Demonstrating a Hybrid Distal-to-Alternating Pathway for N₂ Reduction.
    Rittle J; Peters JC
    J Am Chem Soc; 2016 Mar; 138(12):4243-8. PubMed ID: 26937584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen fixation revisited on iron(0) dinitrogen phosphine complexes.
    Field LD; Hazari N; Li HL
    Inorg Chem; 2015 May; 54(10):4768-76. PubMed ID: 25945866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen Reduction to Ammonia on a Biomimetic Mononuclear Iron Centre: Insights into the Nitrogenase Enzyme.
    Kaczmarek MA; Malhotra A; Balan GA; Timmins A; de Visser SP
    Chemistry; 2018 Apr; 24(20):5293-5302. PubMed ID: 29165842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogenase-Relevant Reactivity of a Synthetic Iron-Sulfur-Carbon Site.
    Speelman AL; Čorić I; Van Stappen C; DeBeer S; Mercado BQ; Holland PL
    J Am Chem Soc; 2019 Aug; 141(33):13148-13157. PubMed ID: 31403298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton-Coupled Reduction of an Iron Cyanide Complex to Methane and Ammonia.
    Rittle J; Peters JC
    Angew Chem Int Ed Engl; 2016 Sep; 55(40):12262-5. PubMed ID: 27607732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic conversion of nitrogen to ammonia by an iron model complex.
    Anderson JS; Rittle J; Peters JC
    Nature; 2013 Sep; 501(7465):84-7. PubMed ID: 24005414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A five-coordinate phosphino/acetate iron(II) scaffold that binds N2, N2H2, N2H4, and NH3 in the sixth site.
    Saouma CT; Moore CE; Rheingold AL; Peters JC
    Inorg Chem; 2011 Nov; 50(22):11285-7. PubMed ID: 22004139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrazine Capture and N-N Bond Cleavage at Iron Enabled by Flexible Appended Lewis Acids.
    Kiernicki JJ; Zeller M; Szymczak NK
    J Am Chem Soc; 2017 Dec; 139(50):18194-18197. PubMed ID: 29227655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of an iron(II) eta(2)-hydrazine complex.
    Crossland JL; Zakharov LN; Tyler DR
    Inorg Chem; 2007 Dec; 46(25):10476-8. PubMed ID: 17983220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncoupling nitrogenase: catalytic reduction of hydrazine to ammonia by a MoFe protein in the absence of Fe protein-ATP.
    Danyal K; Inglet BS; Vincent KA; Barney BM; Hoffman BM; Armstrong FA; Dean DR; Seefeldt LC
    J Am Chem Soc; 2010 Sep; 132(38):13197-9. PubMed ID: 20812745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox Interconversion of Non-Oxido Vanadium Complexes Accompanied by Acid-Base Chemistry of Thiol and Thiolate.
    Yan JA; Chen YS; Chang YH; Tsai CY; Lyu CL; Luo CG; Lee GH; Hsu HF
    Inorg Chem; 2017 Aug; 56(15):9055-9063. PubMed ID: 28707897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation, reactivity and redox properties of carbon- and sulfur-bridged diiron complexes derived from dibenzothienyl Schiff bases: effect of N,N- and N,P-chelating moieties.
    Santo K; Hirotsu M; Kinoshita I
    Dalton Trans; 2015 Mar; 44(9):4155-66. PubMed ID: 25623444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of phosphinoamide ligands in homobimetallic Fe and Mn complexes: the effect of disparate coordination environments on metal-metal interactions and magnetic and redox properties.
    Kuppuswamy S; Bezpalko MW; Powers TM; Turnbull MM; Foxman BM; Thomas CM
    Inorg Chem; 2012 Aug; 51(15):8225-40. PubMed ID: 22804462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Coordinate Iron Chalcogenolates and Their Complexes with Diethyl Ether and Ammonia.
    Stennett CR; Fettinger JC; Power PP
    Inorg Chem; 2021 May; 60(9):6712-6720. PubMed ID: 33848423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and reactions of cubane-type iron-sulfur-phosphine clusters, including soluble clusters of nuclearities 8 and 16.
    Zhou HC; Holm RH
    Inorg Chem; 2003 Jan; 42(1):11-21. PubMed ID: 12513073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trapping a hydrazine reduction intermediate on the nitrogenase active site.
    Barney BM; Laryukhin M; Igarashi RY; Lee HI; Dos Santos PC; Yang TC; Hoffman BM; Dean DR; Seefeldt LC
    Biochemistry; 2005 Jun; 44(22):8030-7. PubMed ID: 15924422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic structure and FeNO conformation of nonheme iron-thiolate-NO complexes: an experimental and DFT study.
    Conradie J; Quarless DA; Hsu HF; Harrop TC; Lippard SJ; Koch SA; Ghosh A
    J Am Chem Soc; 2007 Aug; 129(34):10446-56. PubMed ID: 17685516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.