These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 24377685)
1. Adaptive step ODE algorithms for the 3D simulation of electric heart activity with graphics processing units. Garcia-Molla VM; Liberos A; Vidal A; Guillem MS; Millet J; Gonzalez A; Martinez-Zaldivar FJ; Climent AM Comput Biol Med; 2014 Jan; 44():15-26. PubMed ID: 24377685 [TBL] [Abstract][Full Text] [Related]
2. A memory optimization method combined with adaptive time-step method for cardiac cell simulation based on multi-GPU. Luo CH; Ye H; Chen X Med Biol Eng Comput; 2020 Nov; 58(11):2821-2833. PubMed ID: 32954459 [TBL] [Abstract][Full Text] [Related]
3. [Computer simulation methods of cardiac electrophysiology]. Jin Y; Yang L; Zhang H; Huang Y; Jiang D Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Apr; 23(2):419-23. PubMed ID: 16706380 [TBL] [Abstract][Full Text] [Related]
4. Performance evaluation of GPU parallelization, space-time adaptive algorithms, and their combination for simulating cardiac electrophysiology. Sachetto Oliveira R; Martins Rocha B; Burgarelli D; Meira W; Constantinides C; Weber Dos Santos R Int J Numer Method Biomed Eng; 2018 Feb; 34(2):. PubMed ID: 28636811 [TBL] [Abstract][Full Text] [Related]
5. The secrets to the success of the Rush-Larsen method and its generalizations. Marsh ME; Ziaratgahi ST; Spiteri RJ IEEE Trans Biomed Eng; 2012 Sep; 59(9):2506-15. PubMed ID: 22736685 [TBL] [Abstract][Full Text] [Related]
6. Accuracy and Efficiency in Fixed-Point Neural ODE Solvers. Hopkins M; Furber S Neural Comput; 2015 Oct; 27(10):2148-82. PubMed ID: 26313605 [TBL] [Abstract][Full Text] [Related]
7. On the performance of an implicit-explicit Runge-Kutta method in models of cardiac electrical activity. Spiteri RJ; Dean RC IEEE Trans Biomed Eng; 2008 May; 55(5):1488-95. PubMed ID: 18440894 [TBL] [Abstract][Full Text] [Related]
8. Simulation Study on Effects of Order and Step Size of Runge-Kutta Methods that Solve Contagious Disease and Tumor Models. Wang Z; Wang Q; Klinke DJ J Comput Sci Syst Biol; 2016 Sep; 9(5):163-172. PubMed ID: 28220053 [TBL] [Abstract][Full Text] [Related]
9. Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU. Xia Y; Wang K; Zhang H Comput Math Methods Med; 2015; 2015():862735. PubMed ID: 26581957 [TBL] [Abstract][Full Text] [Related]
10. Efficient solution of ordinary differential equations modeling electrical activity in cardiac cells. Sundnes J; Lines GT; Tveito A Math Biosci; 2001 Aug; 172(2):55-72. PubMed ID: 11520499 [TBL] [Abstract][Full Text] [Related]
11. Computational modelling of cardiac electrophysiology: explanation of the variability of results from different numerical solvers. Pathmanathan P; Bernabeu MO; Niederer SA; Gavaghan DJ; Kay D Int J Numer Method Biomed Eng; 2012 Aug; 28(8):890-903. PubMed ID: 25099569 [TBL] [Abstract][Full Text] [Related]
12. A second-order algorithm for solving dynamic cell membrane equations. Sundnes J; Artebrant R; Skavhaug O; Tveito A IEEE Trans Biomed Eng; 2009 Oct; 56(10):2546-8. PubMed ID: 19237339 [TBL] [Abstract][Full Text] [Related]
13. Numerical quadrature and operator splitting in finite element methods for cardiac electrophysiology. Krishnamoorthi S; Sarkar M; Klug WS Int J Numer Method Biomed Eng; 2013 Nov; 29(11):1243-66. PubMed ID: 23873868 [TBL] [Abstract][Full Text] [Related]
14. Automatic code generation for solvers of cardiac cellular membrane dynamics in GPUs. Amorim RM; Rocha BM; Campos FO; Dos Santos RW Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2666-9. PubMed ID: 21096194 [TBL] [Abstract][Full Text] [Related]
15. Reduced-order modeling for cardiac electrophysiology. Application to parameter identification. Boulakia M; Schenone E; Gerbeau JF Int J Numer Method Biomed Eng; 2012; 28(6-7):727-44. PubMed ID: 25364848 [TBL] [Abstract][Full Text] [Related]