These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24378540)

  • 1. Localization and relative quantification of carbon nanotubes in cells with multispectral imaging flow cytometry.
    Marangon I; Boggetto N; Ménard-Moyon C; Luciani N; Wilhelm C; Bianco A; Gazeau F
    J Vis Exp; 2013 Dec; (82):e50566. PubMed ID: 24378540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo Raman flow cytometry for real-time detection of carbon nanotube kinetics in lymph, blood, and tissues.
    Biris AS; Galanzha EI; Li Z; Mahmood M; Xu Y; Zharov VP
    J Biomed Opt; 2009; 14(2):021006. PubMed ID: 19405719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging.
    Wen J; Xu Y; Li H; Lu A; Sun S
    Chem Commun (Camb); 2015 Jul; 51(57):11346-58. PubMed ID: 25990681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of single-cell fluorescence spectra in laser flow cytometry.
    Gauci MR; Vesey G; Narai J; Veal D; Williams KL; Piper JA
    Cytometry; 1996 Dec; 25(4):388-93. PubMed ID: 8946147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying autophagy: Measuring LC3 puncta and autolysosome formation in cells using multispectral imaging flow cytometry.
    Pugsley HR
    Methods; 2017 Jan; 112():147-156. PubMed ID: 27263026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinguishing modes of cell death using the ImageStream multispectral imaging flow cytometer.
    George TC; Basiji DA; Hall BE; Lynch DH; Ortyn WE; Perry DJ; Seo MJ; Zimmerman CA; Morrissey PJ
    Cytometry A; 2004 Jun; 59(2):237-45. PubMed ID: 15170603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon Nanotubes in Biomedicine.
    Negri V; Pacheco-Torres J; Calle D; López-Larrubia P
    Top Curr Chem (Cham); 2020 Jan; 378(1):15. PubMed ID: 31938922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conjugation of quantum dots on carbon nanotubes for medical diagnosis and treatment.
    Madani SY; Shabani F; Dwek MV; Seifalian AM
    Int J Nanomedicine; 2013; 8():941-50. PubMed ID: 23487255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular lensing and near infrared fluorescent nanosensor arrays to enable chemical efflux cytometry.
    Cho SY; Gong X; Koman VB; Kuehne M; Moon SJ; Son M; Lew TTS; Gordiichuk P; Jin X; Sikes HD; Strano MS
    Nat Commun; 2021 May; 12(1):3079. PubMed ID: 34035262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon nanotubes for biomedical imaging: the recent advances.
    Gong H; Peng R; Liu Z
    Adv Drug Deliv Rev; 2013 Dec; 65(15):1951-63. PubMed ID: 24184130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective detection and quantification of carbon nanotubes in soil.
    Jeong J; Lee YJ; Hwang Ys; Hong IS
    Environ Toxicol Chem; 2015 Sep; 34(9):1969-74. PubMed ID: 25931381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of fluorescent nanoparticle interactions with primary immune cell subpopulations by flow cytometry.
    Gamucci O; Bertero A; Malvindi MA; Sabella S; Pompa PP; Mazzolai B; Bardi G
    J Vis Exp; 2014 Mar; (85):. PubMed ID: 24747480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current investigations into carbon nanotubes for biomedical application.
    Li X; Fan Y; Watari F
    Biomed Mater; 2010 Apr; 5(2):22001. PubMed ID: 20339169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automation of the in vitro micronucleus assay using the Imagestream
    Rodrigues MA
    Cytometry A; 2018 Jul; 93(7):706-726. PubMed ID: 30118149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-situ monitoring of optical deposition of carbon nanotubes onto fiber end.
    Kashiwagi K; Yamashita S; Set SY
    Opt Express; 2009 Mar; 17(7):5711-5. PubMed ID: 19333339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intercellular carbon nanotube translocation assessed by flow cytometry imaging.
    Marangon I; Boggetto N; Ménard-Moyon C; Venturelli E; Béoutis ML; Péchoux C; Luciani N; Wilhelm C; Bianco A; Gazeau F
    Nano Lett; 2012 Sep; 12(9):4830-7. PubMed ID: 22928721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substitutional doping of carbon nanotubes with heteroatoms and their chemical applications.
    Zhang Y; Zhang J; Su DS
    ChemSusChem; 2014 May; 7(5):1240-50. PubMed ID: 24678055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon nanotubes for biomedical applications.
    Sinha N; Yeow JT
    IEEE Trans Nanobioscience; 2005 Jun; 4(2):180-95. PubMed ID: 16117026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hollow carbon dots labeled with FITC or TRITC for use in fluorescent cellular imaging.
    Tang M; Teng P; Long Y; Wang X; Liang L; Shen D; Wang J; Zheng H
    Mikrochim Acta; 2018 Mar; 185(4):223. PubMed ID: 29594848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interference of engineered nanomaterials in flow cytometry: A case study.
    Bohmer N; Rippl A; May S; Walter A; Heo MB; Kwak M; Roesslein M; Song NW; Wick P; Hirsch C
    Colloids Surf B Biointerfaces; 2018 Dec; 172():635-645. PubMed ID: 30243217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.