These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

513 related articles for article (PubMed ID: 24378662)

  • 1. Resisted sprints do not acutely enhance sprinting performance.
    Whelan N; OʼRegan C; Harrison AJ
    J Strength Cond Res; 2014 Jul; 28(7):1858-66. PubMed ID: 24378662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interrelationships between different loads in resisted sprints, half-squat 1 RM and kinematic variables in trained athletes.
    Martínez-Valencia MA; González-Ravé JM; Santos-García DJ; Alcaraz Ramón PE; Navarro-Valdivielso F
    Eur J Sport Sci; 2014; 14 Suppl 1():S18-24. PubMed ID: 24444204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of three types of resisted sprint training devices on the kinematics of sprinting at maximum velocity.
    Alcaraz PE; Palao JM; Elvira JL; Linthorne NP
    J Strength Cond Res; 2008 May; 22(3):890-7. PubMed ID: 18438225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of step-by-step kinematics of resisted, assisted and unloaded 20-m sprint runs.
    van den Tillaar R; Gamble P
    Sports Biomech; 2019 Oct; 18(5):539-552. PubMed ID: 29578385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of resisted sprint training on acceleration with three different loads accounting for 5, 12.5, and 20% of body mass.
    Bachero-Mena B; González-Badillo JJ
    J Strength Cond Res; 2014 Oct; 28(10):2954-60. PubMed ID: 24736770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sled Towing Acutely Decreases Acceleration Sprint Time.
    Wong MA; Dobbs IJ; Watkins CM; Barillas SR; Lin A; Archer DC; Lockie RG; Coburn JW; Brown LE
    J Strength Cond Res; 2017 Nov; 31(11):3046-3051. PubMed ID: 28700513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex training in ice hockey: the effects of a heavy resisted sprint on subsequent ice-hockey sprint performance.
    Matthews MJ; Comfort P; Crebin R
    J Strength Cond Res; 2010 Nov; 24(11):2883-7. PubMed ID: 20940636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Resisted Sprint Improves Rate of Force Development During a 20-m Sprint in Athletes.
    Mangine GT; Huet K; Williamson C; Bechke E; Serafini P; Bender D; Hudy J; Townsend J
    J Strength Cond Res; 2018 Jun; 32(6):1531-1537. PubMed ID: 29786621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of forearm wearable resistance on acceleration mechanics in collegiate track sprinters.
    Uthoff AM; Nagahara R; Macadam P; Neville J; Tinwala F; Graham SP; Cronin JB
    Eur J Sport Sci; 2020 Nov; 20(10):1346-1354. PubMed ID: 31973687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effectiveness of Resisted Sled Training (RST) for Sprint Performance: A Systematic Review and Meta-analysis.
    Alcaraz PE; Carlos-Vivas J; Oponjuru BO; Martínez-Rodríguez A
    Sports Med; 2018 Sep; 48(9):2143-2165. PubMed ID: 29926369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sled push stimulus potentiates subsequent 20-m sprint performance.
    Seitz LB; Mina MA; Haff GG
    J Sci Med Sport; 2017 Aug; 20(8):781-785. PubMed ID: 28185808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of weighted vests and sled towing on sprint kinematics.
    Cronin J; Hansen K; Kawamori N; McNair P
    Sports Biomech; 2008 May; 7(2):160-72. PubMed ID: 18610770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of resisted sprint training on maximum sprint kinetics and kinematics in youth.
    Rumpf MC; Cronin JB; Mohamad IN; Mohamad S; Oliver JL; Hughes MG
    Eur J Sport Sci; 2015; 15(5):374-81. PubMed ID: 25190489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison between the force-velocity relationships of unloaded and sled-resisted sprinting: single vs. multiple trial methods.
    Cross MR; Samozino P; Brown SR; Morin JB
    Eur J Appl Physiol; 2018 Mar; 118(3):563-571. PubMed ID: 29302753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Two Types of Warm-Up Upon Repeated-Sprint Performance in Experienced Soccer Players.
    van den Tillaar R; von Heimburg E
    J Strength Cond Res; 2016 Aug; 30(8):2258-65. PubMed ID: 26808861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute effects of resisted and assisted locomotor activation on sprint performance.
    Matusiński A; Gołas A; Zajac A; Maszczyk A
    Biol Sport; 2022 Oct; 39(4):1049-1054. PubMed ID: 36247959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of resisted sled-pulling sprint training on acceleration and maximum speed performance.
    Zafeiridis A; Saraslanidis P; Manou V; Ioakimidis P; Dipla K; Kellis S
    J Sports Med Phys Fitness; 2005 Sep; 45(3):284-90. PubMed ID: 16230978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematic alterations due to different loading schemes in early acceleration sprint performance from starting blocks.
    Maulder PS; Bradshaw EJ; Keogh JW
    J Strength Cond Res; 2008 Nov; 22(6):1992-2002. PubMed ID: 18978610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of different speed training protocols on sprint acceleration kinematics and muscle strength and power in field sport athletes.
    Lockie RG; Murphy AJ; Schultz AB; Knight TJ; Janse de Jonge XA
    J Strength Cond Res; 2012 Jun; 26(6):1539-50. PubMed ID: 21912294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sprint running with a body-weight supporting kite reduces ground contact time in well-trained sprinters.
    Kratky S; Müller E
    J Strength Cond Res; 2013 May; 27(5):1215-22. PubMed ID: 22744303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.