These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24378702)

  • 1. The genome shows its sensitive side.
    Raj A; McVicker G
    Nat Methods; 2014 Jan; 11(1):39-40. PubMed ID: 24378702
    [No Abstract]   [Full Text] [Related]  

  • 2. Coupling transcription factor occupancy to nucleosome architecture with DNase-FLASH.
    Vierstra J; Wang H; John S; Sandstrom R; Stamatoyannopoulos JA
    Nat Methods; 2014 Jan; 11(1):66-72. PubMed ID: 24185839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refined DNase-seq protocol and data analysis reveals intrinsic bias in transcription factor footprint identification.
    He HH; Meyer CA; Hu SS; Chen MW; Zang C; Liu Y; Rao PK; Fei T; Xu H; Long H; Liu XS; Brown M
    Nat Methods; 2014 Jan; 11(1):73-78. PubMed ID: 24317252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of defined mononucleosomes, dinucleosomes, and nucleosome arrays in vitro and analysis of transcription factor binding.
    Cirillo LA; Zaret KS
    Methods Enzymol; 2004; 375():131-58. PubMed ID: 14870664
    [No Abstract]   [Full Text] [Related]  

  • 5. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position.
    Buenrostro JD; Giresi PG; Zaba LC; Chang HY; Greenleaf WJ
    Nat Methods; 2013 Dec; 10(12):1213-8. PubMed ID: 24097267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of chromatin remodeling.
    Lorch Y; Maier-Davis B; Kornberg RD
    Proc Natl Acad Sci U S A; 2010 Feb; 107(8):3458-62. PubMed ID: 20142505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trinucleotide models for DNA bending propensity: comparison of models based on DNaseI digestion and nucleosome packaging data.
    Brukner I; Sánchez R; Suck D; Pongor S
    J Biomol Struct Dyn; 1995 Oct; 13(2):309-17. PubMed ID: 8579790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA sequence influences hexasome orientation to regulate DNA accessibility.
    Brehove M; Shatoff E; Donovan BT; Jipa CM; Bundschuh R; Poirier MG
    Nucleic Acids Res; 2019 Jun; 47(11):5617-5633. PubMed ID: 31216039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CpG dinucleotide positioning patterns determine the binding affinity of methyl-binding domain to nucleosomes.
    Mendonca A; Sanchez OF; Liu W; Li Z; Yuan C
    Biochim Biophys Acta Gene Regul Mech; 2017 Jun; 1860(6):713-720. PubMed ID: 28377300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNase I footprinting of the nucleosome in whole nuclei.
    Staynov DZ
    Biochem Biophys Res Commun; 2008 Jul; 372(1):226-9. PubMed ID: 18485894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of transcription factor-mediated remodeling of nucleosomal arrays in a purified system.
    Steger DJ; Owen-Hughes T; John S; Workman JL
    Methods; 1997 Jul; 12(3):276-85. PubMed ID: 9237171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron microscopic analysis of the RSC chromatin remodeling complex.
    Asturias FJ; Ezeokonkwo C; Kornberg RD; Lorch Y
    Methods Enzymol; 2004; 376():48-62. PubMed ID: 14975298
    [No Abstract]   [Full Text] [Related]  

  • 13. [Nucleosomes in gene regulation: theoretical approaches].
    Teĭf VB; Shkrobkov AV; Egorova VP; Krot VI
    Mol Biol (Mosk); 2012; 46(1):3-13. PubMed ID: 22642097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple Nhp6 molecules are required to recruit Spt16-Pob3 to form yFACT complexes and to reorganize nucleosomes.
    Ruone S; Rhoades AR; Formosa T
    J Biol Chem; 2003 Nov; 278(46):45288-95. PubMed ID: 12952948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution computational models of genome binding events.
    Qi Y; Rolfe A; MacIsaac KD; Gerber GK; Pokholok D; Zeitlinger J; Danford T; Dowell RD; Fraenkel E; Jaakkola TS; Young RA; Gifford DK
    Nat Biotechnol; 2006 Aug; 24(8):963-70. PubMed ID: 16900145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Next-generation technologies and data analytical approaches for epigenomics.
    Mensaert K; Denil S; Trooskens G; Van Criekinge W; Thas O; De Meyer T
    Environ Mol Mutagen; 2014 Apr; 55(3):155-70. PubMed ID: 24327356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo genomic footprinting using LM-PCR methods.
    Tagoh H; Cockerill PN; Bonifer C
    Methods Mol Biol; 2006; 325():285-314. PubMed ID: 16761734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of a RSC-nucleosome complex and insights into chromatin remodeling.
    Chaban Y; Ezeokonkwo C; Chung WH; Zhang F; Kornberg RD; Maier-Davis B; Lorch Y; Asturias FJ
    Nat Struct Mol Biol; 2008 Dec; 15(12):1272-7. PubMed ID: 19029894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assays for transcription factors access to nucleosomal DNA.
    Li Q; Wrange O
    Methods; 1997 May; 12(1):96-104. PubMed ID: 9169199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution mapping of in vivo genomic transcription factor binding sites using in situ DNase I footprinting and ChIP-seq.
    Chumsakul O; Nakamura K; Kurata T; Sakamoto T; Hobman JL; Ogasawara N; Oshima T; Ishikawa S
    DNA Res; 2013 Aug; 20(4):325-38. PubMed ID: 23580539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.