These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24378731)

  • 1. Treatment of NORM contaminated soil from the oilfields.
    Abdellah WM; Al-Masri MS
    J Environ Radioact; 2014 Mar; 129():63-7. PubMed ID: 24378731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical fractionation of radium-226 in NORM contaminated soil from oilfields.
    Al Abdullah J; Al-Masri MS; Amin Y; Awad I; Sheaib Z
    J Environ Radioact; 2016 Dec; 165():47-53. PubMed ID: 27623014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of TENORMs field measurement with actual activity concentration in contaminated soil matrices.
    Saint-Fort R; Alboiu M; Hettiaratchi P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Sep; 42(11):1649-54. PubMed ID: 17849307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remediating radium contaminated legacy sites: Advances made through machine learning in routine monitoring of "hot" particles.
    Varley A; Tyler A; Smith L; Dale P; Davies M
    Sci Total Environ; 2015 Jul; 521-522():270-9. PubMed ID: 25847171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soil radium, soil gas radon and indoor radon empirical relationships to assist in post-closure impact assessment related to near-surface radioactive waste disposal.
    Appleton JD; Cave MR; Miles JC; Sumerling TJ
    J Environ Radioact; 2011 Mar; 102(3):221-34. PubMed ID: 20951477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Green approach for radium isotopes removal from TENORM waste using humic substances as environmental friendly.
    Attallah MF; Imam DM
    Appl Radiat Isot; 2018 Oct; 140():201-208. PubMed ID: 30053669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of enhanced radium isotopes in oil production wastes in Turkey.
    Parmaksız A; Ağuş Y; Bulgurlu F; Bulur E; Öncü T; Özkök YÖ
    J Environ Radioact; 2015 Mar; 141():82-9. PubMed ID: 25562751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiochemical signature of radium-isotopes and some radiological hazard parameters in TENORM waste associated with petroleum production: A review study.
    El Afifi EM; Mansy MS; Hilal MA
    J Environ Radioact; 2023 Jan; 256():107042. PubMed ID: 36283880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural radionuclide concentrations in processed materials from Thai mineral industries.
    Chanyotha S; Kranrod C; Chankow N; Kritsananuwat R; Sriploy P; Pangza K
    Radiat Prot Dosimetry; 2012 Nov; 152(1-3):71-5. PubMed ID: 22908347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaching of technologically enhanced naturally occurring radioactive materials.
    Chau ND; Chruściel E
    Appl Radiat Isot; 2007 Aug; 65(8):968-74. PubMed ID: 17482828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiochemical characterization of produced water from two production offshore oilfields in Ghana.
    Kpeglo DO; Mantero J; Darko EO; Emi-Reynolds G; Faanu A; Manjón G; Vioque I; Akaho EH; Garcia-Tenorio R
    J Environ Radioact; 2016 Feb; 152():35-45. PubMed ID: 26630039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential chemical treatment of radium species in TENORM waste sludge produced from oil and natural gas production.
    El Afifi EM; Awwad NS; Hilal MA
    J Hazard Mater; 2009 Jan; 161(2-3):907-12. PubMed ID: 18514402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of leachability on environmental risk assessment for naturally occurring radioactive materials in petroleum oil fields.
    Rajaretnam G; Spitz HB
    Health Phys; 2000 Feb; 78(2):191-8. PubMed ID: 10647985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Study on Sorption of (226)Ra on Different Clay Matrices.
    Alhajji E; Al-Masri MS; Khalily H; Naoum BE; Khalil HS; Nashawati A
    Bull Environ Contam Toxicol; 2016 Aug; 97(2):255-60. PubMed ID: 27329110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of procedures for determination of Ra-226 in water by alpha-particle spectrometry with emphasis on the recovery.
    Benedik L; Repinc U; Strok M
    Appl Radiat Isot; 2010; 68(7-8):1221-5; discussion 1225. PubMed ID: 20045344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of 226Ra contamination depth in soil using the multiple photopeaks method.
    Haddad Kh; Al-Masri MS; Doubal AW
    J Environ Radioact; 2014 Feb; 128():33-7. PubMed ID: 24292393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractionation of natural radionuclides in soils from the vicinity of a former uranium mine Zirovski vrh, Slovenia.
    Strok M; Smodis B
    J Environ Radioact; 2010 Jan; 101(1):22-8. PubMed ID: 19762128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radium geochemistry in Na-Cl type groundwater in Niigata Prefecture, Japan.
    Tomita J; Satake H; Fukuyama T; Sasaki K; Sakaguchi A; Yamamoto M
    J Environ Radioact; 2010 Mar; 101(3):201-10. PubMed ID: 19926368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of coal slag for naturally occurring radioactive material.
    Spitz HB; Rajaretnam G
    Am Ind Hyg Assoc J; 1998 Jul; 59(7):471-7. PubMed ID: 9697295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining factors in the elimination of uranium and radium from groundwaters during a standard potabilization process.
    Baeza A; Salas A; Legarda F
    Sci Total Environ; 2008 Nov; 406(1-2):24-34. PubMed ID: 18799200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.