These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 24378748)

  • 1. Analysis of skeletal muscle defects in larval zebrafish by birefringence and touch-evoke escape response assays.
    Smith LL; Beggs AH; Gupta VA
    J Vis Exp; 2013 Dec; (82):e50925. PubMed ID: 24378748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of birefringence readily measures the level of muscle damage in zebrafish.
    Berger J; Sztal T; Currie PD
    Biochem Biophys Res Commun; 2012 Jul; 423(4):785-8. PubMed ID: 22713473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Touch-evoked Response and Locomotion Assays to Assess Muscle Performance and Function in Zebrafish.
    Sztal TE; Ruparelia AA; Williams C; Bryson-Richardson RJ
    J Vis Exp; 2016 Oct; (116):. PubMed ID: 27842370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of Dystrophin and Laminin α2-Chain Deficient Zebrafish Larvae In Vivo Prevents the Development of Muscular Dystrophy.
    Li M; Arner A
    PLoS One; 2015; 10(11):e0139483. PubMed ID: 26536238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Swimming into prominence: the zebrafish as a valuable tool for studying human myopathies and muscular dystrophies.
    Gibbs EM; Horstick EJ; Dowling JJ
    FEBS J; 2013 Sep; 280(17):4187-97. PubMed ID: 23809187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional motion tracking reveals a diving component to visual and auditory escape swims in zebrafish larvae.
    Bishop BH; Spence-Chorman N; Gahtan E
    J Exp Biol; 2016 Dec; 219(Pt 24):3981-3987. PubMed ID: 27802145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscular dystrophy modeling in zebrafish.
    Li M; Hromowyk KJ; Amacher SL; Currie PD
    Methods Cell Biol; 2017; 138():347-380. PubMed ID: 28129852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of
    Prykhozhij SV; Caceres L; Ban K; Cordeiro-Santanach A; Nagaraju K; Hoffman EP; Berman JN
    Genes (Basel); 2023 Feb; 14(2):. PubMed ID: 36833417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging escape and avoidance behavior in zebrafish larvae.
    Colwill RM; Creton R
    Rev Neurosci; 2011; 22(1):63-73. PubMed ID: 21572576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Swimming of larval zebrafish: ontogeny of body waves and implications for locomotory development.
    Müller UK; van Leeuwen JL
    J Exp Biol; 2004 Feb; 207(Pt 5):853-68. PubMed ID: 14747416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A splice site mutation in laminin-α2 results in a severe muscular dystrophy and growth abnormalities in zebrafish.
    Gupta VA; Kawahara G; Myers JA; Chen AT; Hall TE; Manzini MC; Currie PD; Zhou Y; Zon LI; Kunkel LM; Beggs AH
    PLoS One; 2012; 7(8):e43794. PubMed ID: 22952766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental defects in a zebrafish model for muscular dystrophies associated with the loss of fukutin-related protein (FKRP).
    Thornhill P; Bassett D; Lochmüller H; Bushby K; Straub V
    Brain; 2008 Jun; 131(Pt 6):1551-61. PubMed ID: 18477595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The zebrafish dag1 mutant: a novel genetic model for dystroglycanopathies.
    Gupta V; Kawahara G; Gundry SR; Chen AT; Lencer WI; Zhou Y; Zon LI; Kunkel LM; Beggs AH
    Hum Mol Genet; 2011 May; 20(9):1712-25. PubMed ID: 21296866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid habituation of a touch-induced escape response in Zebrafish (Danio rerio) Larvae.
    Roberts AC; Chornak J; Alzagatiti JB; Ly DT; Bill BR; Trinkeller J; Pearce KC; Choe RC; Campbell CS; Wong D; Deutsch E; Hernandez S; Glanzman DL
    PLoS One; 2019; 14(4):e0214374. PubMed ID: 30946762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle dysfunction in a zebrafish model of Duchenne muscular dystrophy.
    Widrick JJ; Alexander MS; Sanchez B; Gibbs DE; Kawahara G; Beggs AH; Kunkel LM
    Physiol Genomics; 2016 Nov; 48(11):850-860. PubMed ID: 27764767
    [No Abstract]   [Full Text] [Related]  

  • 16. Are fish less responsive to a flow stimulus when swimming?
    Feitl KE; Ngo V; McHenry MJ
    J Exp Biol; 2010 Sep; 213(Pt 18):3131-7. PubMed ID: 20802114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The sensory-motor responses to environmental acidosis in larval zebrafish: Influences of neurotransmitter and water chemistry.
    JavadiEsfahani R; Kwong RWM
    Chemosphere; 2019 Nov; 235():383-390. PubMed ID: 31271998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Escape trajectories are deflected when fish larvae intercept their own C-start wake.
    Li G; Müller UK; van Leeuwen JL; Liu H
    J R Soc Interface; 2014 Dec; 11(101):20140848. PubMed ID: 25401174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipin 1 deficiency causes adult-onset myasthenia with motor neuron dysfunction in humans and neuromuscular junction defects in zebrafish.
    Lu S; Lyu Z; Wang Z; Kou Y; Liu C; Li S; Hu M; Zhu H; Wang W; Zhang C; Kuan YS; Liu YW; Chen J; Tian J
    Theranostics; 2021; 11(6):2788-2805. PubMed ID: 33456573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo imaging of zebrafish reveals differences in the spinal networks for escape and swimming movements.
    Ritter DA; Bhatt DH; Fetcho JR
    J Neurosci; 2001 Nov; 21(22):8956-65. PubMed ID: 11698606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.