These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 24378854)
1. High throughput microfluidic rapid and low cost prototyping packaging methods. Miled A; Sawan M J Vis Exp; 2013 Dec; (82):e50735. PubMed ID: 24378854 [TBL] [Abstract][Full Text] [Related]
2. Rapid prototyping of PDMS devices using SU-8 lithography. Jenkins G Methods Mol Biol; 2013; 949():153-68. PubMed ID: 23329442 [TBL] [Abstract][Full Text] [Related]
3. Rapid prototyping of arrayed microfluidic systems in polystyrene for cell-based assays. Young EW; Berthier E; Guckenberger DJ; Sackmann E; Lamers C; Meyvantsson I; Huttenlocher A; Beebe DJ Anal Chem; 2011 Feb; 83(4):1408-17. PubMed ID: 21261280 [TBL] [Abstract][Full Text] [Related]
4. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite. Kim J; Surapaneni R; Gale BK Lab Chip; 2009 May; 9(9):1290-3. PubMed ID: 19370251 [TBL] [Abstract][Full Text] [Related]
6. High-throughput droplet analysis and multiplex DNA detection in the microfluidic platform equipped with a robust sample-introduction technique. Chen J; Ji X; He Z Anal Chim Acta; 2015 Aug; 888():110-7. PubMed ID: 26320965 [TBL] [Abstract][Full Text] [Related]
7. Microfluidic Devices for Characterizing Pore-scale Event Processes in Porous Media for Oil Recovery Applications. Vavra ED; Zeng Y; Xiao S; Hirasaki GJ; Biswal SL J Vis Exp; 2018 Jan; (131):. PubMed ID: 29364222 [TBL] [Abstract][Full Text] [Related]
8. Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding. Wu H; Huang B; Zare RN Lab Chip; 2005 Dec; 5(12):1393-8. PubMed ID: 16286971 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of microfluidic devices containing patterned microwell arrays. Henley WH; Dennis PJ; Ramsey JM Anal Chem; 2012 Feb; 84(3):1776-80. PubMed ID: 22242542 [TBL] [Abstract][Full Text] [Related]
14. Modification of the glass surface property in PDMS-glass hybrid microfluidic devices. Kaneda S; Ono K; Fukuba T; Nojima T; Yamamoto T; Fujii T Anal Sci; 2012; 28(1):39-44. PubMed ID: 22232222 [TBL] [Abstract][Full Text] [Related]
15. A novel fabrication technique to minimize poly(dimethylsiloxane)-microchannels deformation under high-pressure operation. Madadi H; Mohammadi M; Casals-Terré J; López RC Electrophoresis; 2013 Dec; 34(22-23):3126-32. PubMed ID: 24114728 [TBL] [Abstract][Full Text] [Related]
16. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices. Nock V; Blaikie RJ; David T Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072 [TBL] [Abstract][Full Text] [Related]
17. Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip. Kim SM; Burns MA; Hasselbrink EF Anal Chem; 2006 Jul; 78(14):4779-85. PubMed ID: 16841895 [TBL] [Abstract][Full Text] [Related]
18. PDMS-glass bonding using grafted polymeric adhesive--alternative process flow for compatibility with patterned biological molecules. Beh CW; Zhou W; Wang TH Lab Chip; 2012 Oct; 12(20):4120-7. PubMed ID: 22858861 [TBL] [Abstract][Full Text] [Related]
19. A disposable microfluidic device with a reusable magnetophoretic functional substrate for isolation of circulating tumor cells. Cho H; Kim J; Jeon CW; Han KH Lab Chip; 2017 Nov; 17(23):4113-4123. PubMed ID: 29094741 [TBL] [Abstract][Full Text] [Related]
20. Self-sealed vertical polymeric nanoporous-junctions for high-throughput nanofluidic applications. Kim SJ; Han J Anal Chem; 2008 May; 80(9):3507-11. PubMed ID: 18380489 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]