BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 24379000)

  • 41. Carotid tonometry versus synthesized aorta pressure waves for the estimation of central systolic blood pressure and augmentation index.
    Segers P; Rietzschel E; Heireman S; De Buyzere M; Gillebert T; Verdonck P; Van Bortel L
    Am J Hypertens; 2005 Sep; 18(9 Pt 1):1168-73. PubMed ID: 16245411
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of mechanical behaviour of the brachial artery on blood pressure measurement during both cuff inflation and cuff deflation.
    Zheng D; Pan F; Murray A
    Blood Press Monit; 2013 Oct; 18(5):265-71. PubMed ID: 23924706
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Application of the N-point moving average method for brachial pressure waveform-derived estimation of central aortic systolic pressure.
    Shih YT; Cheng HM; Sung SH; Hu WC; Chen CH
    Hypertension; 2014 Apr; 63(4):865-70. PubMed ID: 24420554
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ambulatory tonometric blood pressure measurements in patients with diabetes.
    Theilade S; Joergensen C; Persson F; Lajer M; Rossing P
    Diabetes Technol Ther; 2012 Jun; 14(6):453-6. PubMed ID: 22524631
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of angiotensin receptor blockade on central aortic systolic blood pressure in hypertensive Asians measured using radial tonometry: an open prospective cohort study.
    Teong HH; Chin AM; Sule AA; Tay JC
    Singapore Med J; 2016 Jul; 57(7):384-9. PubMed ID: 26875683
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The reproducibility of central aortic blood pressure measurements in healthy subjects using applanation tonometry and sphygmocardiography.
    Siebenhofer A; Kemp C; Sutton A; Williams B
    J Hum Hypertens; 1999 Sep; 13(9):625-9. PubMed ID: 10482972
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Central blood pressure estimation by using N-point moving average method in the brachial pulse wave.
    Sugawara R; Horinaka S; Yagi H; Ishimura K; Honda T
    Hypertens Res; 2015 May; 38(5):336-41. PubMed ID: 25693855
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of a novel sphygmomanometer, which estimates central aortic blood pressure from analysis of brachial artery suprasystolic pressure waves.
    Lin AC; Lowe A; Sidhu K; Harrison W; Ruygrok P; Stewart R
    J Hypertens; 2012 Sep; 30(9):1743-50. PubMed ID: 22796711
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Feasibility of oscillometric aortic pressure and stiffness assessment using the VaSera VS-1500: comparison with a common tonometric method.
    Endes S; Bachler M; Li Y; Mayer C; Hanssen H; Hametner B; Schmidt-Trucksäss A; Wassertheurer S
    Blood Press Monit; 2015 Oct; 20(5):273-9. PubMed ID: 26065840
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Estimation of central pressure augmentation using automated radial artery tonometry.
    Melenovsky V; Borlaug BA; Fetics B; Kessler K; Shively L; Kass DA
    J Hypertens; 2007 Jul; 25(7):1403-9. PubMed ID: 17563562
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Comparison of central pulse pressure estimated from pulse wave propagation velocity and carotid pulse pressure measured by applantation tonometry].
    Chemaly E; London G; Benetos A; Darné B; Asmar R
    Arch Mal Coeur Vaiss; 2002; 95(7-8):637-40. PubMed ID: 12365071
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Numerical validation of a suprasystolic brachial cuff-based method for estimating aortic pressure.
    Liang F
    Biomed Mater Eng; 2014; 24(1):1053-62. PubMed ID: 24211996
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Invasive validation of a novel brachial cuff-based oscillometric device (SphygmoCor XCEL) for measuring central blood pressure.
    Shoji T; Nakagomi A; Okada S; Ohno Y; Kobayashi Y
    J Hypertens; 2017 Jan; 35(1):69-75. PubMed ID: 27763994
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Central Blood Pressure Monitoring via a Standard Automatic Arm Cuff.
    Natarajan K; Cheng HM; Liu J; Gao M; Sung SH; Chen CH; Hahn JO; Mukkamala R
    Sci Rep; 2017 Oct; 7(1):14441. PubMed ID: 29089581
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparing blood pressure measurements between a photoplethysmography-based and a standard cuff-based manometry device.
    Nachman D; Gepner Y; Goldstein N; Kabakov E; Ishay AB; Littman R; Azmon Y; Jaffe E; Eisenkraft A
    Sci Rep; 2020 Sep; 10(1):16116. PubMed ID: 32999400
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of central blood pressure devices on the basis of a modified protocol of the European Society of Hypertension: application to the Centron cBP301.
    Agnoletti D; Millasseau S; Topouchian J; Safar ME; Blacher J
    Blood Press Monit; 2014 Apr; 19(2):103-8. PubMed ID: 24418970
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The impact of arm circumference on noninvasive oscillometric blood pressure referenced with intra-aortic blood pressure.
    Shangguan Q; Wu Y; Xu J; Su H; Li J; Hong K; Cheng X
    Blood Press Monit; 2015 Dec; 20(6):316-9. PubMed ID: 26110370
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cuff Under Pressure for Greater Accuracy.
    Picone DS; Schultz MG; Hughes AD; Sharman JE
    Curr Hypertens Rep; 2020 Sep; 22(11):93. PubMed ID: 32959103
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Pressure wave shape comparison between two non-invasive tonometric devices].
    Agnoletti D; Millasseau S; Topouchian J; Zhang Y; Safar ME; Blacher J
    Ann Cardiol Angeiol (Paris); 2013 Jun; 62(3):193-9. PubMed ID: 23721987
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The impact of calibration approaches on the accuracy of oscillometric central aortic blood pressure measurement.
    Gotzmann M; Hogeweg M; Bauer F; Seibert FS; Rohn BJ; Mügge A; Babel N; Westhoff TH
    J Hypertens; 2020 Nov; 38(11):2154-2160. PubMed ID: 32649641
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.