These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 24379196)
1. Evaluation of DNA primase DnaG as a potential target for antibiotics. Kuron A; Korycka-Machala M; Brzostek A; Nowosielski M; Doherty A; Dziadek B; Dziadek J Antimicrob Agents Chemother; 2014; 58(3):1699-706. PubMed ID: 24379196 [TBL] [Abstract][Full Text] [Related]
2. A novel non-radioactive primase-pyrophosphatase activity assay and its application to the discovery of inhibitors of Mycobacterium tuberculosis primase DnaG. Biswas T; Resto-Roldán E; Sawyer SK; Artsimovitch I; Tsodikov OV Nucleic Acids Res; 2013 Feb; 41(4):e56. PubMed ID: 23267008 [TBL] [Abstract][Full Text] [Related]
3. Antimycobacterial activity of DNA intercalator inhibitors of Mycobacterium tuberculosis primase DnaG. Gajadeera C; Willby MJ; Green KD; Shaul P; Fridman M; Garneau-Tsodikova S; Posey JE; Tsodikov OV J Antibiot (Tokyo); 2015 Mar; 68(3):153-7. PubMed ID: 25248725 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of NAD(+) -dependent DNA ligase of mycobacteria as a potential target for antibiotics. Korycka-Machala M; Rychta E; Brzostek A; Sayer HR; Rumijowska-Galewicz A; Bowater RP; Dziadek J Antimicrob Agents Chemother; 2007 Aug; 51(8):2888-97. PubMed ID: 17548501 [TBL] [Abstract][Full Text] [Related]
5. Discovery of inhibitors of Bacillus anthracis primase DnaG. Biswas T; Green KD; Garneau-Tsodikova S; Tsodikov OV Biochemistry; 2013 Oct; 52(39):6905-10. PubMed ID: 24004110 [TBL] [Abstract][Full Text] [Related]
6. Dual-Acting Small-Molecule Inhibitors Targeting Mycobacterial DNA Replication. Singh M; Ilic S; Tam B; Ben-Ishay Y; Sherf D; Pappo D; Akabayov B Chemistry; 2020 Aug; 26(47):10849-10860. PubMed ID: 32485035 [TBL] [Abstract][Full Text] [Related]
7. Targeting of essential mycobacterial replication enzyme DnaG primase revealed Mitoxantrone and Vapreotide as novel mycobacterial growth inhibitors. Ali W; Jamal S; Gangwar R; Ahmed F; Sharma R; Agarwal M; Sheikh JA; Grover A; Grover S Mol Inform; 2024 Mar; 43(3):e202300284. PubMed ID: 38123523 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the dnaG locus in Mycobacterium smegmatis reveals linkage of DNA replication and cell division. Klann AG; Belanger AE; Abanes-De Mello A; Lee JY; Hatfull GF J Bacteriol; 1998 Jan; 180(1):65-72. PubMed ID: 9422594 [TBL] [Abstract][Full Text] [Related]
9. OsmC proteins of Mycobacterium tuberculosis and Mycobacterium smegmatis protect against organic hydroperoxide stress. Saikolappan S; Das K; Sasindran SJ; Jagannath C; Dhandayuthapani S Tuberculosis (Edinb); 2011 Dec; 91 Suppl 1():S119-27. PubMed ID: 22088319 [TBL] [Abstract][Full Text] [Related]
10. in silico screening and molecular dynamics simulations study to identify novel potent inhibitors against Mycobacterium tuberculosis DnaG primase. Hakeem S; Singh I; Sharma P; Verma V; Chandra R Acta Trop; 2019 Nov; 199():105154. PubMed ID: 31445897 [TBL] [Abstract][Full Text] [Related]
11. Development of potential broad spectrum antimicrobials using C2-symmetric 9-fluorenone alkyl amine. Choi SR; Larson MA; Hinrichs SH; Narayanasamy P Bioorg Med Chem Lett; 2016 Apr; 26(8):1997-9. PubMed ID: 26965856 [TBL] [Abstract][Full Text] [Related]
12. Accumulation of rifampicin by Mycobacterium aurum, Mycobacterium smegmatis and Mycobacterium tuberculosis. Piddock LJ; Williams KJ; Ricci V J Antimicrob Chemother; 2000 Feb; 45(2):159-65. PubMed ID: 10660497 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of mycobacterial growth by plumbagin derivatives. Mathew R; Kruthiventi AK; Prasad JV; Kumar SP; Srinu G; Chatterji D Chem Biol Drug Des; 2010 Jul; 76(1):34-42. PubMed ID: 20456370 [TBL] [Abstract][Full Text] [Related]
14. Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis. Larsen MH; Vilchèze C; Kremer L; Besra GS; Parsons L; Salfinger M; Heifets L; Hazbon MH; Alland D; Sacchettini JC; Jacobs WR Mol Microbiol; 2002 Oct; 46(2):453-66. PubMed ID: 12406221 [TBL] [Abstract][Full Text] [Related]
15. Azole antifungals are potent inhibitors of cytochrome P450 mono-oxygenases and bacterial growth in mycobacteria and streptomycetes. McLean KJ; Marshall KR; Richmond A; Hunter IS; Fowler K; Kieser T; Gurcha SS; Besra GS; Munro AW Microbiology (Reading); 2002 Oct; 148(Pt 10):2937-2949. PubMed ID: 12368427 [TBL] [Abstract][Full Text] [Related]
16. Genetic analysis of the beta-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to beta-lactam antibiotics. Flores AR; Parsons LM; Pavelka MS Microbiology (Reading); 2005 Feb; 151(Pt 2):521-532. PubMed ID: 15699201 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of the Mycobacterium smegmatis and BCG models for the discovery of Mycobacterium tuberculosis inhibitors. Altaf M; Miller CH; Bellows DS; O'Toole R Tuberculosis (Edinb); 2010 Nov; 90(6):333-7. PubMed ID: 20933470 [TBL] [Abstract][Full Text] [Related]
18. Structures of the Catalytic Domain of Bacterial Primase DnaG in Complexes with DNA Provide Insight into Key Priming Events. Hou C; Biswas T; Tsodikov OV Biochemistry; 2018 Apr; 57(14):2084-2093. PubMed ID: 29558114 [TBL] [Abstract][Full Text] [Related]
20. Inhibitory activity of traditional plants against Mycobacterium smegmatis and their action on Filamenting temperature sensitive mutant Z (FtsZ)-A cell division protein. Ravindran R; Chakrapani G; Mitra K; Doble M PLoS One; 2020; 15(5):e0232482. PubMed ID: 32357366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]