These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24379266)

  • 41. Numerical analysis of tooth mobility: formulation of a non-linear constitutive law for the periodontal ligament.
    Natali AN; Pavan PG; Scarpa C
    Dent Mater; 2004 Sep; 20(7):623-9. PubMed ID: 15236936
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessment of the Best FEA Failure Criteria (Part I): Investigation of the Biomechanical Behavior of PDL in Intact and Reduced Periodontium.
    Moga RA; Buru SM; Olteanu CD
    Int J Environ Res Public Health; 2022 Sep; 19(19):. PubMed ID: 36231719
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A finite element simulation of initial movement, orthodontic movement, and the centre of resistance of the maxillary teeth connected with an archwire.
    Kojima Y; Fukui H
    Eur J Orthod; 2014 Jun; 36(3):255-61. PubMed ID: 22051537
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A constitutive model for the periodontal ligament as a compressible transversely isotropic visco-hyperelastic tissue.
    Zhurov AI; Limbert G; Aeschlimann DP; Middleton J
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):223-35. PubMed ID: 17558650
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Time-dependent mechanical behaviour of the periodontal ligament.
    van Driel WD; van Leeuwen EJ; Von den Hoff JW; Maltha JC; Kuijpers-Jagtman AM
    Proc Inst Mech Eng H; 2000; 214(5):497-504. PubMed ID: 11109857
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An evaluation of the biomechanical response of the tooth and periodontium to orthodontic forces in adolescent and adult subjects.
    Tanne K; Yoshida S; Kawata T; Sasaki A; Knox J; Jones ML
    Br J Orthod; 1998 May; 25(2):109-15. PubMed ID: 9668993
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Finite element analysis of equine incisor teeth. Part 1: determination of the material parameters of the periodontal ligament.
    Schrock P; Lüpke M; Seifert H; Borchers L; Staszyk C
    Vet J; 2013 Dec; 198(3):583-9. PubMed ID: 24220347
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tissue reaction to orthodontic tooth movement--a new paradigm.
    Melsen B
    Eur J Orthod; 2001 Dec; 23(6):671-81. PubMed ID: 11890063
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Finite element analysis suggests functional bone strain accounts for continuous post-eruptive emergence of teeth.
    Sarrafpour B; Rungsiyakull C; Swain M; Li Q; Zoellner H
    Arch Oral Biol; 2012 Aug; 57(8):1070-8. PubMed ID: 22673755
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Experimental and numerical determination of initial tooth mobility and material properties of the periodontal ligament in rat molar specimens.
    Kawarizadeh A; Bourauel C; Jäger A
    Eur J Orthod; 2003 Dec; 25(6):569-78. PubMed ID: 14700262
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effects of material and structural properties of the periodontal ligament in mechanical function of tooth-PDL-bone complex in dental trauma: A sensitivity study using finiteelement analysis.
    Dastgerdi AK; Bavil AY; Rouhi G
    Proc Inst Mech Eng H; 2023 May; 237(5):619-627. PubMed ID: 36939175
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analytical determination of stress patterns in the periodontal ligament during orthodontic tooth movement.
    Van Schepdael A; Geris L; Vander Sloten J
    Med Eng Phys; 2013 Mar; 35(3):403-10. PubMed ID: 23046973
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Numeric simulations of en-masse space closure with sliding mechanics.
    Kojima Y; Fukui H
    Am J Orthod Dentofacial Orthop; 2010 Dec; 138(6):702.e1-6; discussion 702-4. PubMed ID: 21130318
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biomechanical characterization of the periodontal ligament: Orthodontic tooth movement.
    Uhlir R; Mayo V; Lin PH; Chen S; Lee YT; Hershey G; Lin FC; Ko CC
    Angle Orthod; 2017 Mar; 87(2):183-192. PubMed ID: 27542105
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Orthodontic intrusion of periodontally-compromised maxillary incisors: 3-dimensional finite element method analysis.
    Minch LE; Sarul M; Nowak R; Kawala B; Antoszewska-Smith J
    Adv Clin Exp Med; 2017 Aug; 26(5):829-833. PubMed ID: 29068580
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Determination of the centre of resistance in an upper human canine and idealized tooth model.
    Vollmer D; Bourauel C; Maier K; Jäger A
    Eur J Orthod; 1999 Dec; 21(6):633-48. PubMed ID: 10665193
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Numerical simulation of canine retraction by sliding mechanics.
    Kojima Y; Fukui H
    Am J Orthod Dentofacial Orthop; 2005 May; 127(5):542-51. PubMed ID: 15877034
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of different modeling strategies for the periodontal ligament on finite element simulation results.
    Hohmann A; Kober C; Young P; Dorow C; Geiger M; Boryor A; Sander FM; Sander C; Sander FG
    Am J Orthod Dentofacial Orthop; 2011 Jun; 139(6):775-83. PubMed ID: 21640884
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An investigation into the importance of the periodontal ligament and alveolar bone as supporting structures in finite element studies.
    Rees JS
    J Oral Rehabil; 2001 May; 28(5):425-32. PubMed ID: 11380782
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A comparative FEM-study of tooth mobility using isotropic and anisotropic models of the periodontal ligament. Finite Element Method.
    Provatidis CG
    Med Eng Phys; 2000 Jun; 22(5):359-70. PubMed ID: 11121769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.