These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 24379389)
1. Fenton chemistry at aqueous interfaces. Enami S; Sakamoto Y; Colussi AJ Proc Natl Acad Sci U S A; 2014 Jan; 111(2):623-8. PubMed ID: 24379389 [TBL] [Abstract][Full Text] [Related]
2. Role of Ferryl Ion Intermediates in Fast Fenton Chemistry on Aqueous Microdroplets. Gu AY; Musgrave C; Goddard WA; Hoffmann MR; Colussi AJ Environ Sci Technol; 2021 Nov; 55(21):14370-14377. PubMed ID: 34213313 [TBL] [Abstract][Full Text] [Related]
3. Bioinspired Nonheme Iron Catalysts for C-H and C═C Bond Oxidation: Insights into the Nature of the Metal-Based Oxidants. Oloo WN; Que L Acc Chem Res; 2015 Sep; 48(9):2612-21. PubMed ID: 26280131 [TBL] [Abstract][Full Text] [Related]
4. Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction. Pang SY; Jiang J; Ma J Environ Sci Technol; 2011 Jan; 45(1):307-12. PubMed ID: 21133375 [TBL] [Abstract][Full Text] [Related]
5. Fenton-like oxidation and mineralization of phenol using synthetic Fe(II)-Fe(III) green rusts. Hanna K; Kone T; Ruby C Environ Sci Pollut Res Int; 2010 Jan; 17(1):124-34. PubMed ID: 19350299 [TBL] [Abstract][Full Text] [Related]
6. Role of Fe(IV)-oxo intermediates in stoichiometric and catalytic oxidations mediated by iron pyridine-azamacrocycles. Ye W; Ho DM; Friedle S; Palluccio TD; Rybak-Akimova EV Inorg Chem; 2012 May; 51(9):5006-21. PubMed ID: 22534174 [TBL] [Abstract][Full Text] [Related]
7. Ferryl Ion in the Photo-Fenton Process at Acidic pH: Occurrence, Fate, and Implications. Deng G; Wang Z; Ma J; Jiang J; He D; Li X; Szczuka A; Zhang Z Environ Sci Technol; 2023 Nov; 57(47):18586-18596. PubMed ID: 36912755 [TBL] [Abstract][Full Text] [Related]
8. Mechanistic insight into peroxo-shunt formation of biomimetic models for compound II, their reactivity toward organic substrates, and the influence of N-methylimidazole axial ligation. Oszajca M; Drzewiecka-Matuszek A; Franke A; Rutkowska-Zbik D; Brindell M; Witko M; Stochel G; van Eldik R Chemistry; 2014 Feb; 20(8):2328-43. PubMed ID: 24443188 [TBL] [Abstract][Full Text] [Related]
9. Kinetic simulation studies on the transient formation of the oxo-iron(IV) porphyrin radical cation during the reaction of iron(III) tetrakis-5,10,15,20-(N-methyl-4-pyridyl)-porphyrin with hydrogen peroxide in aqueous solution. Saha TK; Karmaker S; Tamagake K Luminescence; 2003; 18(5):259-67. PubMed ID: 14587077 [TBL] [Abstract][Full Text] [Related]
10. Equilibrating (L)Fe Oloo WN; Banerjee R; Lipscomb JD; Que L J Am Chem Soc; 2017 Dec; 139(48):17313-17326. PubMed ID: 29136467 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of iron-dipicolinamide catalyst with Fe-N bonds for enhancing non-radical reactive species under alkaline Fenton process. Jin Q; Chen Q; Kang J; Shen J; Guo F; Chen Z Chemosphere; 2020 Feb; 241():125005. PubMed ID: 31605994 [TBL] [Abstract][Full Text] [Related]
12. Effect of ethylenediamine-N,N'-disuccinic acid on Fenton and photo-Fenton processes using goethite as an iron source: optimization of parameters for bisphenol A degradation. Huang W; Brigante M; Wu F; Hanna K; Mailhot G Environ Sci Pollut Res Int; 2013 Jan; 20(1):39-50. PubMed ID: 22733556 [TBL] [Abstract][Full Text] [Related]
13. Activation of Dioxygen by a TAML Activator in Reverse Micelles: Characterization of an Fe(III)Fe(IV) Dimer and Associated Catalytic Chemistry. Tang LL; Gunderson WA; Weitz AC; Hendrich MP; Ryabov AD; Collins TJ J Am Chem Soc; 2015 Aug; 137(30):9704-15. PubMed ID: 26161504 [TBL] [Abstract][Full Text] [Related]
14. Redox potential and C-H bond cleaving properties of a nonheme Fe(IV)=O complex in aqueous solution. Wang D; Zhang M; Bühlmann P; Que L J Am Chem Soc; 2010 Jun; 132(22):7638-44. PubMed ID: 20476758 [TBL] [Abstract][Full Text] [Related]
15. Cooperation of multiple active species generated in hydrogen peroxide activation by iron porphyrin for phenolic pollutants degradation. Yang X; Hu J; Wu L; Hou H; Liang S; Yang J Environ Pollut; 2022 Nov; 313():120097. PubMed ID: 36089136 [TBL] [Abstract][Full Text] [Related]
16. Photo degradation of methyl orange an azo dye by advanced Fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism. Gomathi Devi L; Girish Kumar S; Mohan Reddy K; Munikrishnappa C J Hazard Mater; 2009 May; 164(2-3):459-67. PubMed ID: 18805635 [TBL] [Abstract][Full Text] [Related]
17. How Do Metalloproteins Tame the Fenton Reaction and Utilize •OH Radicals in Constructive Manners? Wang B; Zhang X; Fang W; Rovira C; Shaik S Acc Chem Res; 2022 Aug; 55(16):2280-2290. PubMed ID: 35926175 [TBL] [Abstract][Full Text] [Related]
18. Near-stoichiometric conversion of H(2)O(2) to Fe(IV)=O at a nonheme iron(II) center. Insights into the O-O bond cleavage step. Li F; England J; Que L J Am Chem Soc; 2010 Feb; 132(7):2134-5. PubMed ID: 20121136 [TBL] [Abstract][Full Text] [Related]
19. Co-oxidation of As(III) and Fe(II) by oxygen through complexation between As(III) and Fe(II)/Fe(III) species. Ding W; Xu J; Chen T; Liu C; Li J; Wu F Water Res; 2018 Oct; 143():599-607. PubMed ID: 30025352 [TBL] [Abstract][Full Text] [Related]
20. Redox property of coordinated iron ion enables activation of O Gao Y; Wang P; Chu Y; Kang F; Cheng Y; Repo E; Feng M; Yu X; Zeng H Water Res; 2024 Jan; 248():120826. PubMed ID: 37976952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]