BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 24379392)

  • 1. Spatial organization of RNA polymerase II inside a mammalian cell nucleus revealed by reflected light-sheet superresolution microscopy.
    Zhao ZW; Roy R; Gebhardt JC; Suter DM; Chapman AR; Xie XS
    Proc Natl Acad Sci U S A; 2014 Jan; 111(2):681-6. PubMed ID: 24379392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a 'Spot On' Understanding of Transcription in the Nucleus.
    Patange S; Ball DA; Karpova TS; Larson DR
    J Mol Biol; 2021 Jul; 433(14):167016. PubMed ID: 33951451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of RNA Polymerase II Clustering inside Live-Cell Nuclei Using Bayesian Nanoscopy.
    Chen X; Wei M; Zheng MM; Zhao J; Hao H; Chang L; Xi P; Sun Y
    ACS Nano; 2016 Feb; 10(2):2447-54. PubMed ID: 26855123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-color 3D-dSTORM colocalization and quantification of ROXY1 and RNAPII variants throughout the transcription cycle in root meristem nuclei.
    Maß L; Holtmannspötter M; Zachgo S
    Plant J; 2020 Dec; 104(5):1423-1436. PubMed ID: 32896918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging transcription elongation dynamics by new technologies unveils the organization of initiation and elongation in transcription factories.
    Kimura H; Sato Y
    Curr Opin Cell Biol; 2022 Feb; 74():71-79. PubMed ID: 35183895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Single-Molecule Localization Microscopy Expanded Our Mechanistic Understanding of RNA Polymerase II Transcription.
    Hoboth P; Šebesta O; Hozák P
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34206594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial organization of RNA polymerase and its relationship with transcription in
    Weng X; Bohrer CH; Bettridge K; Lagda AC; Cagliero C; Jin DJ; Xiao J
    Proc Natl Acad Sci U S A; 2019 Oct; 116(40):20115-20123. PubMed ID: 31527272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic approach to the molecular counting problem in superresolution microscopy.
    Rollins GC; Shin JY; Bustamante C; Pressé S
    Proc Natl Acad Sci U S A; 2015 Jan; 112(2):E110-8. PubMed ID: 25535361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization of Endogenous Transcription Factors in Single Cells Using an Antibody Electroporation-Based Imaging Approach.
    Conic S; Desplancq D; Ferrand A; Molina N; Weiss E; Tora L
    Methods Mol Biol; 2019; 2038():209-221. PubMed ID: 31407287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging of Transcription and Replication in the Bacterial Chromosome with Multicolor Three-Dimensional Superresolution Structured Illumination Microscopy.
    Martin CM; Cagliero C; Sun Z; Chen D; Jin DJ
    Methods Mol Biol; 2018; 1837():117-129. PubMed ID: 30109608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kaposi's Sarcoma-Associated Herpesvirus Hijacks RNA Polymerase II To Create a Viral Transcriptional Factory.
    Chen CP; Lyu Y; Chuang F; Nakano K; Izumiya C; Jin D; Campbell M; Izumiya Y
    J Virol; 2017 Jun; 91(11):. PubMed ID: 28331082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single molecule studies of RNA polymerase II transcription in vitro.
    Horn AE; Goodrich JA; Kugel JF
    Transcription; 2014; 5(1):e27608. PubMed ID: 25764112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription initiation by human RNA polymerase II visualized at single-molecule resolution.
    Revyakin A; Zhang Z; Coleman RA; Li Y; Inouye C; Lucas JK; Park SR; Chu S; Tjian R
    Genes Dev; 2012 Aug; 26(15):1691-702. PubMed ID: 22810624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale imaging by superresolution fluorescence microscopy and its emerging applications in biomedical research.
    Bertocchi C; Goh WI; Zhang Z; Kanchanawong P
    Crit Rev Biomed Eng; 2013; 41(4-5):281-308. PubMed ID: 24941410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring transcription dynamics in living cells using a photobleaching approach.
    Hochberg H; Brody Y; Shav-Tal Y
    Methods; 2017 May; 120():58-64. PubMed ID: 28434903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates.
    Cho WK; Spille JH; Hecht M; Lee C; Li C; Grube V; Cisse II
    Science; 2018 Jul; 361(6400):412-415. PubMed ID: 29930094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of TATA box sequence and orientation in determining RNA polymerase II/III transcription specificity.
    Wang Y; Jensen RC; Stumph WE
    Nucleic Acids Res; 1996 Aug; 24(15):3100-6. PubMed ID: 8760900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation analysis framework for localization-based superresolution microscopy.
    Schnitzbauer J; Wang Y; Zhao S; Bakalar M; Nuwal T; Chen B; Huang B
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):3219-3224. PubMed ID: 29531072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abundance and distribution of RNA polymerase II in Arabidopsis interphase nuclei.
    Schubert V; Weisshart K
    J Exp Bot; 2015 Mar; 66(6):1687-98. PubMed ID: 25740920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superresolution imaging of transcription units on newt lampbrush chromosomes.
    Kaufmann R; Cremer C; Gall JG
    Chromosome Res; 2012 Dec; 20(8):1009-15. PubMed ID: 22892678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.