BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 24379403)

  • 1. Mechanism of photosignaling by Drosophila cryptochrome: role of the redox status of the flavin chromophore.
    Ozturk N; Selby CP; Zhong D; Sancar A
    J Biol Chem; 2014 Feb; 289(8):4634-42. PubMed ID: 24379403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian clock activity of cryptochrome relies on tryptophan-mediated photoreduction.
    Lin C; Top D; Manahan CC; Young MW; Crane BR
    Proc Natl Acad Sci U S A; 2018 Apr; 115(15):3822-3827. PubMed ID: 29581265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flavin reduction activates Drosophila cryptochrome.
    Vaidya AT; Top D; Manahan CC; Tokuda JM; Zhang S; Pollack L; Young MW; Crane BR
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20455-60. PubMed ID: 24297896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct mechanisms of
    Baik LS; Au DD; Nave C; Foden AJ; Enrriquez-Villalva WK; Holmes TC
    Proc Natl Acad Sci U S A; 2019 Nov; 116(46):23339-23344. PubMed ID: 31659046
    [No Abstract]   [Full Text] [Related]  

  • 5. Changes in active site histidine hydrogen bonding trigger cryptochrome activation.
    Ganguly A; Manahan CC; Top D; Yee EF; Lin C; Young MW; Thiel W; Crane BR
    Proc Natl Acad Sci U S A; 2016 Sep; 113(36):10073-8. PubMed ID: 27551082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome.
    Berndt A; Kottke T; Breitkreuz H; Dvorsky R; Hennig S; Alexander M; Wolf E
    J Biol Chem; 2007 Apr; 282(17):13011-21. PubMed ID: 17298948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning flavin environment to detect and control light-induced conformational switching in Drosophila cryptochrome.
    Chandrasekaran S; Schneps CM; Dunleavy R; Lin C; DeOliveira CC; Ganguly A; Crane BR
    Commun Biol; 2021 Feb; 4(1):249. PubMed ID: 33637846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ramshackle (Brwd3) promotes light-induced ubiquitylation of Drosophila Cryptochrome by DDB1-CUL4-ROC1 E3 ligase complex.
    Ozturk N; VanVickle-Chavez SJ; Akileswaran L; Van Gelder RN; Sancar A
    Proc Natl Acad Sci U S A; 2013 Mar; 110(13):4980-5. PubMed ID: 23479607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox potential: differential roles in dCRY and mCRY1 functions.
    Froy O; Chang DC; Reppert SM
    Curr Biol; 2002 Jan; 12(2):147-52. PubMed ID: 11818067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory Impact of the C-Terminal Tail on Charge Transfer Pathways in
    Richter M; Fingerhut BP
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33086760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular metabolites modulate in vivo signaling of Arabidopsis cryptochrome-1.
    El-Esawi M; Glascoe A; Engle D; Ritz T; Link J; Ahmad M
    Plant Signal Behav; 2015; 10(9):e1063758. PubMed ID: 26313597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DCRY is a Drosophila photoreceptor protein implicated in light entrainment of circadian rhythm.
    Ishikawa T; Matsumoto A; Kato T; Togashi S; Ryo H; Ikenaga M; Todo T; Ueda R; Tanimura T
    Genes Cells; 1999 Jan; 4(1):57-65. PubMed ID: 10231393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function.
    Czarna A; Berndt A; Singh HR; Grudziecki A; Ladurner AG; Timinszky G; Kramer A; Wolf E
    Cell; 2013 Jun; 153(6):1394-405. PubMed ID: 23746849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells.
    Hoang N; Schleicher E; Kacprzak S; Bouly JP; Picot M; Wu W; Berndt A; Wolf E; Bittl R; Ahmad M
    PLoS Biol; 2008 Jul; 6(7):e160. PubMed ID: 18597555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic insight into light-dependent recognition of Timeless by Drosophila Cryptochrome.
    Lin C; Schneps CM; Chandrasekaran S; Ganguly A; Crane BR
    Structure; 2022 Jun; 30(6):851-861.e5. PubMed ID: 35397203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Residues at a Single Site Differentiate Animal Cryptochromes from Cyclobutane Pyrimidine Dimer Photolyases by Affecting the Proteins' Preferences for Reduced FAD.
    Xu L; Wen B; Wang Y; Tian C; Wu M; Zhu G
    Chembiochem; 2017 Jun; 18(12):1129-1137. PubMed ID: 28393477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic determination of the functional state in photolyase and the implication for cryptochrome.
    Liu Z; Zhang M; Guo X; Tan C; Li J; Wang L; Sancar A; Zhong D
    Proc Natl Acad Sci U S A; 2013 Aug; 110(32):12972-7. PubMed ID: 23882072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An extraretinally expressed insect cryptochrome with similarity to the blue light photoreceptors of mammals and plants.
    Egan ES; Franklin TM; Hilderbrand-Chae MJ; McNeil GP; Roberts MA; Schroeder AJ; Zhang X; Jackson FR
    J Neurosci; 1999 May; 19(10):3665-73. PubMed ID: 10233998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway.
    Fedele G; Green EW; Rosato E; Kyriacou CP
    Nat Commun; 2014 Jul; 5():4391. PubMed ID: 25019586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate.
    Fogle KJ; Parson KG; Dahm NA; Holmes TC
    Science; 2011 Mar; 331(6023):1409-13. PubMed ID: 21385718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.