These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 24379403)

  • 21. Ascorbic acid may not be involved in cryptochrome-based magnetoreception.
    Nielsen C; Kattnig DR; Sjulstok E; Hore PJ; Solov'yov IA
    J R Soc Interface; 2017 Dec; 14(137):. PubMed ID: 29263128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectroscopic characterization of radicals and radical pairs in fruit fly cryptochrome - protonated and nonprotonated flavin radical-states.
    Paulus B; Bajzath C; Melin F; Heidinger L; Kromm V; Herkersdorf C; Benz U; Mann L; Stehle P; Hellwig P; Weber S; Schleicher E
    FEBS J; 2015 Aug; 282(16):3175-89. PubMed ID: 25879256
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fly cryptochrome and the visual system.
    Mazzotta G; Rossi A; Leonardi E; Mason M; Bertolucci C; Caccin L; Spolaore B; Martin AJ; Schlichting M; Grebler R; Helfrich-Förster C; Mammi S; Costa R; Tosatto SC
    Proc Natl Acad Sci U S A; 2013 Apr; 110(15):6163-8. PubMed ID: 23536301
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GSK-3 Beta Does Not Stabilize Cryptochrome in the Circadian Clock of Drosophila.
    Fischer R; Helfrich-Förster C; Peschel N
    PLoS One; 2016; 11(1):e0146571. PubMed ID: 26741981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS.
    Koh K; Zheng X; Sehgal A
    Science; 2006 Jun; 312(5781):1809-12. PubMed ID: 16794082
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception.
    Busza A; Emery-Le M; Rosbash M; Emery P
    Science; 2004 Jun; 304(5676):1503-6. PubMed ID: 15178801
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coupling Drosophila melanogaster Cryptochrome Light Activation and Oxidation of the Kvβ Subunit Hyperkinetic NADPH Cofactor.
    Hong G; Pachter R; Ritz T
    J Phys Chem B; 2018 Jun; 122(25):6503-6510. PubMed ID: 29847128
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trp triad-dependent rapid photoreduction is not required for the function of Arabidopsis CRY1.
    Gao J; Wang X; Zhang M; Bian M; Deng W; Zuo Z; Yang Z; Zhong D; Lin C
    Proc Natl Acad Sci U S A; 2015 Jul; 112(29):9135-40. PubMed ID: 26106155
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrafast dynamics and anionic active states of the flavin cofactor in cryptochrome and photolyase.
    Kao YT; Tan C; Song SH; Oztürk N; Li J; Wang L; Sancar A; Zhong D
    J Am Chem Soc; 2008 Jun; 130(24):7695-701. PubMed ID: 18500802
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cellular metabolites enhance the light sensitivity of Arabidopsis cryptochrome through alternate electron transfer pathways.
    Engelhard C; Wang X; Robles D; Moldt J; Essen LO; Batschauer A; Bittl R; Ahmad M
    Plant Cell; 2014 Nov; 26(11):4519-31. PubMed ID: 25428980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human cryptochrome-1 confers light independent biological activity in transgenic Drosophila correlated with flavin radical stability.
    Vieira J; Jones AR; Danon A; Sakuma M; Hoang N; Robles D; Tait S; Heyes DJ; Picot M; Yoshii T; Helfrich-Förster C; Soubigou G; Coppee JY; Klarsfeld A; Rouyer F; Scrutton NS; Ahmad M
    PLoS One; 2012; 7(3):e31867. PubMed ID: 22427812
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Animal type 1 cryptochromes. Analysis of the redox state of the flavin cofactor by site-directed mutagenesis.
    Öztürk N; Song SH; Selby CP; Sancar A
    J Biol Chem; 2008 Feb; 283(6):3256-3263. PubMed ID: 18056988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks.
    Ivanchenko M; Stanewsky R; Giebultowicz JM
    J Biol Rhythms; 2001 Jun; 16(3):205-15. PubMed ID: 11407780
    [TBL] [Abstract][Full Text] [Related]  

  • 34. pH-dependence of signaling-state formation in Drosophila cryptochrome.
    Einholz C; Nohr D; Rodriguez R; Topitsch A; Kern M; Goldmann J; Chileshe E; Okasha M; Weber S; Schleicher E
    Arch Biochem Biophys; 2021 Mar; 700():108787. PubMed ID: 33545100
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light-induced electron transfer in a cryptochrome blue-light photoreceptor.
    Giovani B; Byrdin M; Ahmad M; Brettel K
    Nat Struct Biol; 2003 Jun; 10(6):489-90. PubMed ID: 12730688
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Veela defines a molecular link between Cryptochrome and Timeless in the light-input pathway to Drosophila's circadian clock.
    Peschel N; Veleri S; Stanewsky R
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17313-8. PubMed ID: 17068124
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure of full-length Drosophila cryptochrome.
    Zoltowski BD; Vaidya AT; Top D; Widom J; Young MW; Crane BR
    Nature; 2011 Nov; 480(7377):396-9. PubMed ID: 22080955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster.
    Kutta RJ; Archipowa N; Scrutton NS
    Phys Chem Chem Phys; 2018 Nov; 20(45):28767-28776. PubMed ID: 30417904
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reaction mechanism of Drosophila cryptochrome.
    Ozturk N; Selby CP; Annayev Y; Zhong D; Sancar A
    Proc Natl Acad Sci U S A; 2011 Jan; 108(2):516-21. PubMed ID: 21187431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cryptochrome-positive and -negative clock neurons in Drosophila entrain differentially to light and temperature.
    Yoshii T; Hermann C; Helfrich-Förster C
    J Biol Rhythms; 2010 Dec; 25(6):387-98. PubMed ID: 21135155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.