BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24379435)

  • 1. Monte Carlo simulation of a whole-body counter using IGOR phantoms.
    Bochud FO; Laedermann JP; Baechler S; Bailat CJ; Boschung M; Aroua A; Mayer S
    Radiat Prot Dosimetry; 2014 Dec; 162(3):280-8. PubMed ID: 24379435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of voxel phantoms and Monte Carlo method to whole-body counter calibration.
    Kinase S; Takagi S; Noguchi H; Saito K
    Radiat Prot Dosimetry; 2007; 125(1-4):189-93. PubMed ID: 17522042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficiency correction factors of an ACCUSCAN whole-body counter due to the biodistribution of 134Cs, 137Cs and 60Co.
    Bento J; Barros S; Teles P; Vaz P; Zankl M
    Radiat Prot Dosimetry; 2013 Jun; 155(1):16-24. PubMed ID: 23188813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of various anthropomorphic phantom types for in vivo measurements by means of Monte Carlo simulations.
    Schläger M
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):384-8. PubMed ID: 21030400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRUCIAL PARAMETERS FOR PROPER SIMULATION OF THE DETECTOR USED IN IN VIVO MEASUREMENTS.
    Vrba T
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):359-63. PubMed ID: 26743254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Monte Carlo calibration of a whole body counter using the ICRP computational phantoms.
    Nilsson J; Isaksson M
    Radiat Prot Dosimetry; 2015 Mar; 163(4):458-67. PubMed ID: 25147249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of counting efficiencies of a whole-body counter using Monte Carlo simulation with voxel phantoms.
    Takahashi M; Kinase S; Kramer R
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):407-10. PubMed ID: 21131662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of voxel phantoms in whole-body counting for the validation of calibration phantoms and the assessment of uncertainties.
    de Carlan L; Roch P; Blanchardon E; Franck D
    Radiat Prot Dosimetry; 2007; 125(1-4):477-82. PubMed ID: 17018545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): cylindrical and anthropomorphic phantoms.
    DeMarco JJ; Cagnon CH; Cody DD; Stevens DM; McCollough CH; O'Daniel J; McNitt-Gray MF
    Phys Med Biol; 2005 Sep; 50(17):3989-4004. PubMed ID: 16177525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The standfast whole body counter and the sliced BOMAB phantom: efficiency as a function of number of sources and energy modeled by MCNP5.
    Kramer GH; Capello K
    Health Phys; 2007 Feb; 92(2):170-5. PubMed ID: 17220718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncertainty budget for a whole body counter in the scan geometry and computer simulation of the calibration phantoms.
    Schlagbauer M; Hrnecek E; Rollet S; Fischer H; Brandl A; Kindl P
    Radiat Prot Dosimetry; 2007; 125(1-4):149-52. PubMed ID: 17656442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New method of voxel phantom creation: application for whole-body counting calibration and perspectives in individual internal dose assessment.
    de Carlan L; Roch P; Blanchardon E; Franck D
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):160-4. PubMed ID: 16604619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MONTE CARLO SIMULATION OF THE BREMSSTRAHLUNG RADIATION FOR THE MEASUREMENT OF AN INTERNAL CONTAMINATION WITH PURE-BETA EMITTERS IN VIVO.
    Fantínová K; Fojtík P; Malátová I
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):354-8. PubMed ID: 26443547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An analysis of dependency of counting efficiency on worker anatomy for in vivo measurements: whole-body counting.
    Zhang B; Mille M; Xu XG
    Phys Med Biol; 2008 Jul; 53(13):3463-75. PubMed ID: 18547914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. COMPARISON OF COMPUTATIONAL PHANTOMS AND INVESTIGATION OF THE EFFECT OF BIODISTRIBUTION ON ACTIVITY ESTIMATIONS.
    Cartemo P; Nilsson J; Isaksson M; Nordlund A
    Radiat Prot Dosimetry; 2016 Nov; 171(3):358-364. PubMed ID: 26410764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of two anthropomorphic phantoms as a calibration tool for whole-body counter using Monte Carlo simulations.
    Manohari M; Mathiyarasu R; Rajagopal V; Venkatraman B
    Radiat Prot Dosimetry; 2015 Apr; 164(3):298-303. PubMed ID: 25406363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OEDIPE: a new graphical user interface for fast construction of numerical phantoms and MCNP calculations.
    Franck D; de Carlan L; Pierrat N; Broggio D; Lamart S
    Radiat Prot Dosimetry; 2007; 127(1-4):262-5. PubMed ID: 18037685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement and Simulation of the Counting Efficiency of a Whole-body Counter Using a BOMAB Phantom Inserted with Rod Sources Containing Mixed Radionuclides.
    Park M; Yoo J; Ha WH; Park S; Jin YW
    Health Phys; 2018 Mar; 114(3):282-287. PubMed ID: 29360706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The StandFast whole body counter: efficiency as a function of BOMAB phantom size and energy modeled by MCNP5.
    Kramer GH; Capello K
    Health Phys; 2007 Mar; 92(3):290-6. PubMed ID: 17293701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency calibration of a whole-body-counting measurement setup using a modular physical phantom.
    Lebacq AL; Bruggeman M; Vanhavere F
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):411-4. PubMed ID: 21216733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.