BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 24379821)

  • 1. Development of roGFP2-derived redox probes for measurement of the glutathione redox potential in the cytosol of severely glutathione-deficient rml1 seedlings.
    Aller I; Rouhier N; Meyer AJ
    Front Plant Sci; 2013; 4():506. PubMed ID: 24379821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confocal imaging of glutathione redox potential in living plant cells.
    Schwarzländer M; Fricker MD; Müller C; Marty L; Brach T; Novak J; Sweetlove LJ; Hell R; Meyer AJ
    J Microsc; 2008 Aug; 231(2):299-316. PubMed ID: 18778428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic Monitoring of the Glutathione Redox State in Engineered Human Myocardium.
    Trautsch I; Heta E; Soong PL; Levent E; Nikolaev VO; Bogeski I; Katschinski DM; Mayr M; Zimmermann WH
    Front Physiol; 2019; 10():272. PubMed ID: 31024328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer.
    Meyer AJ; Brach T; Marty L; Kreye S; Rouhier N; Jacquot JP; Hell R
    Plant J; 2007 Dec; 52(5):973-86. PubMed ID: 17892447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of glutathione synthesis distinctly alters mitochondrial and cytosolic redox poise.
    Kolossov VL; Hanafin WP; Beaudoin JN; Bica DE; DiLiberto SJ; Kenis PJ; Gaskins HR
    Exp Biol Med (Maywood); 2014 Apr; 239(4):394-403. PubMed ID: 24586100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring E(GSH) and H2O2 with roGFP2-based redox probes.
    Morgan B; Sobotta MC; Dick TP
    Free Radic Biol Med; 2011 Dec; 51(11):1943-51. PubMed ID: 21964034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient light-induced intracellular oxidation revealed by redox biosensor.
    Kolossov VL; Beaudoin JN; Hanafin WP; DiLiberto SJ; Kenis PJ; Gaskins HR
    Biochem Biophys Res Commun; 2013 Oct; 439(4):517-21. PubMed ID: 24025674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Förster resonance energy transfer-based sensor targeting endoplasmic reticulum reveals highly oxidative environment.
    Kolossov VL; Leslie MT; Chatterjee A; Sheehan BM; Kenis PJ; Gaskins HR
    Exp Biol Med (Maywood); 2012 Jun; 237(6):652-62. PubMed ID: 22715429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Live Monitoring of ROS-Induced Cytosolic Redox Changes with roGFP2-Based Sensors in Plants.
    Ugalde JM; Fecker L; Schwarzländer M; Müller-Schüssele SJ; Meyer AJ
    Methods Mol Biol; 2022; 2526():65-85. PubMed ID: 35657512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time imaging of the intracellular glutathione redox potential.
    Gutscher M; Pauleau AL; Marty L; Brach T; Wabnitz GH; Samstag Y; Meyer AJ; Dick TP
    Nat Methods; 2008 Jun; 5(6):553-9. PubMed ID: 18469822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring glutathione redox potential of HIV-1-infected macrophages.
    Bhaskar A; Munshi M; Khan SZ; Fatima S; Arya R; Jameel S; Singh A
    J Biol Chem; 2015 Jan; 290(2):1020-38. PubMed ID: 25406321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redesign of genetically encoded biosensors for monitoring mitochondrial redox status in a broad range of model eukaryotes.
    Albrecht SC; Sobotta MC; Bausewein D; Aller I; Hell R; Dick TP; Meyer AJ
    J Biomol Screen; 2014 Mar; 19(3):379-86. PubMed ID: 23954927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring intracellular redox changes in ozone-exposed airway epithelial cells.
    Gibbs-Flournoy EA; Simmons SO; Bromberg PA; Dick TP; Samet JM
    Environ Health Perspect; 2013 Mar; 121(3):312-7. PubMed ID: 23249900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Live Imaging of the Mitochondrial Glutathione Redox State in Primary Neurons using a Ratiometric Indicator.
    Katsalifis A; Casaril AM; Depp C; Bas-Orth C
    J Vis Exp; 2021 Oct; (176):. PubMed ID: 34747400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low glutathione regulates gene expression and the redox potentials of the nucleus and cytosol in Arabidopsis thaliana.
    Schnaubelt D; Queval G; Dong Y; Diaz-Vivancos P; Makgopa ME; Howell G; De Simone A; Bai J; Hannah MA; Foyer CH
    Plant Cell Environ; 2015 Feb; 38(2):266-79. PubMed ID: 24329757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Method for measurement of bacillithiol redox potential changes using the Brx-roGFP2 redox biosensor in
    Van Loi V; Antelmann H
    MethodsX; 2020; 7():100900. PubMed ID: 32420048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutathione redox state plays a key role in flower development and pollen vigour.
    García-Quirós E; Alché JD; Karpinska B; Foyer CH
    J Exp Bot; 2020 Jan; 71(2):730-741. PubMed ID: 31557297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deciphering the mechanism of glutaredoxin-catalyzed roGFP2 redox sensing reveals a ternary complex with glutathione for protein disulfide reduction.
    Geissel F; Lang L; Husemann B; Morgan B; Deponte M
    Nat Commun; 2024 Feb; 15(1):1733. PubMed ID: 38409212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A genome-wide screen in yeast identifies specific oxidative stress genes required for the maintenance of sub-cellular redox homeostasis.
    Ayer A; Fellermeier S; Fife C; Li SS; Smits G; Meyer AJ; Dawes IW; Perrone GG
    PLoS One; 2012; 7(9):e44278. PubMed ID: 22970195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrasting cytosolic glutathione redox dynamics under abiotic and biotic stress in barley as revealed by the biosensor Grx1-roGFP2.
    Bohle F; Klaus A; Ingelfinger J; Tegethof H; Safari N; Schwarzländer M; Hochholdinger F; Hahn M; Meyer AJ; Acosta IF; Müller-Schüssele SJ
    J Exp Bot; 2024 Apr; 75(8):2299-2312. PubMed ID: 38301663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.