BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 2437998)

  • 21. Acceleration of axonal outgrowth in rat sciatic nerve at one week after axotomy.
    Jacob JM; McQuarrie IG
    J Neurobiol; 1993 Mar; 24(3):356-67. PubMed ID: 8492112
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of GAP-43, a rapidly transported growth-associated protein, and class II beta tubulin, a slowly transported cytoskeletal protein, are coordinated in regenerating neurons.
    Hoffman PN
    J Neurosci; 1989 Mar; 9(3):893-7. PubMed ID: 2494308
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Axonal transport of type III intermediate filament protein peripherin in intact and regenerating motor axons of the rat sciatic nerve.
    Chadan S; Le Gall JY; Di Giamberardino L; Filliatreau G
    J Neurosci Res; 1994 Oct; 39(2):127-39. PubMed ID: 7530776
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spinal cord transection in adult rats: effects of local infusion of nerve growth factor on the corticospinal tract axons.
    Fernandez E; Pallini R; Lauretti L; Mercanti D; Serra A; Calissano P
    Neurosurgery; 1993 Nov; 33(5):889-93. PubMed ID: 7505409
    [TBL] [Abstract][Full Text] [Related]  

  • 25. B-50/GAP43 is localized at the cytoplasmic side of the plasma membrane in developing and adult rat pyramidal tract.
    Gorgels TG; Van Lookeren Campagne M; Oestreicher AB; Gribnau AA; Gispen WH
    J Neurosci; 1989 Nov; 9(11):3861-9. PubMed ID: 2531216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell death of corticospinal neurons is induced by axotomy before but not after innervation of spinal targets.
    Merline M; Kalil K
    J Comp Neurol; 1990 Jun; 296(3):506-16. PubMed ID: 2358550
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic changes in Robo2 and Slit1 expression in adult rat dorsal root ganglion and sciatic nerve after peripheral and central axonal injury.
    Yi XN; Zheng LF; Zhang JW; Zhang LZ; Xu YZ; Luo G; Luo XG
    Neurosci Res; 2006 Nov; 56(3):314-21. PubMed ID: 16979769
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redirected growth of pyramidal tract axons following neonatal pyramidotomy in cats.
    Tolbert DL; Der T
    J Comp Neurol; 1987 Jun; 260(2):299-311. PubMed ID: 3611406
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intrinsic versus extrinsic factors in determining the regeneration of the central processes of rat dorsal root ganglion neurons: the influence of a peripheral nerve graft.
    Chong MS; Woolf CJ; Turmaine M; Emson PC; Anderson PN
    J Comp Neurol; 1996 Jun; 370(1):97-104. PubMed ID: 8797160
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of immediate-early gene expression in rat retinal ganglion cells after axotomy and during regeneration through a peripheral nerve graft.
    Hüll M; Bähr M
    J Neurobiol; 1994 Jan; 25(1):92-105. PubMed ID: 8113786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immunocytochemical distribution of the protein kinase C substrate B-50 (GAP43) in developing rat pyramidal tract.
    Gorgels TG; Oestreicher AB; de Kort EJ; Gispen WH
    Neurosci Lett; 1987 Dec; 83(1-2):59-64. PubMed ID: 3441300
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light and electron microscopic localization of B-50 (GAP43) in the rat spinal cord during transganglionic degenerative atrophy and regeneration.
    Knyihár-Csillik E; Csillik B; Oestreicher AB
    J Neurosci Res; 1992 May; 32(1):93-109. PubMed ID: 1378504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A light and electron microscopic study of regrowing pyramidal tract fibers.
    Kalil K; Reh T
    J Comp Neurol; 1982 Nov; 211(3):265-75. PubMed ID: 7174894
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Attempts to facilitate dorsal column axonal regeneration in a neonatal spinal environment.
    Dent LJ; McCasland JS; Stelzner DJ
    J Comp Neurol; 1996 Aug; 372(3):435-56. PubMed ID: 8873870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased expression of growth-associated protein 43 immunoreactivity in axons following compression trauma to rat spinal cord.
    Li GL; Farooque M; Holtz A; Olsson Y
    Acta Neuropathol; 1996 Jul; 92(1):19-26. PubMed ID: 8811121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rescue of alpha-SNS sodium channel expression in small dorsal root ganglion neurons after axotomy by nerve growth factor in vivo.
    Dib-Hajj SD; Black JA; Cummins TR; Kenney AM; Kocsis JD; Waxman SG
    J Neurophysiol; 1998 May; 79(5):2668-76. PubMed ID: 9582237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and functional alterations in rat corticospinal neurons after axotomy.
    Tseng GF; Prince DA
    J Neurophysiol; 1996 Jan; 75(1):248-67. PubMed ID: 8822555
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prolonged alteration in composition of fast transported protein in axons prevented from regenerating after injury.
    Bisby MA
    J Neurobiol; 1982 Jul; 13(4):377-81. PubMed ID: 6180131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ascending sensory, but not other long-tract axons, regenerate into the connective tissue matrix that forms at the site of a spinal cord injury in mice.
    Inman DM; Steward O
    J Comp Neurol; 2003 Aug; 462(4):431-49. PubMed ID: 12811811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increased uptake and transport of cholera toxin B-subunit in dorsal root ganglion neurons after peripheral axotomy: possible implications for sensory sprouting.
    Tong YG; Wang HF; Ju G; Grant G; Hökfelt T; Zhang X
    J Comp Neurol; 1999 Feb; 404(2):143-58. PubMed ID: 9934990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.