These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24380058)

  • 21.
    Dickbreder T; Sabath F; Höltkemeier L; Bechstein R; Kühnle A
    Beilstein J Nanotechnol; 2023; 14():1225-1237. PubMed ID: 38170148
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correction for specimen movement after acquisition of element-specific electron microprobe images.
    Lamvik MK; Ingram P; Menon RG; Beese LS; Davilla SD; LeFurgey A
    J Microsc; 1989 Nov; 156(Pt 2):183-90. PubMed ID: 2593148
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanometric depth resolution from multi-focal images in microscopy.
    Dalgarno HI; Dalgarno PA; Dada AC; Towers CE; Gibson GJ; Parton RM; Davis I; Warburton RJ; Greenaway AH
    J R Soc Interface; 2011 Jul; 8(60):942-51. PubMed ID: 21247948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast auto-acquisition tomography tilt series by using HD video camera in ultra-high voltage electron microscope.
    Nishi R; Cao M; Kanaji A; Nishida T; Yoshida K; Isakozawa S
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i25. PubMed ID: 25359822
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Construction of an instant structured illumination microscope.
    Curd A; Cleasby A; Makowska K; York A; Shroff H; Peckham M
    Methods; 2015 Oct; 88():37-47. PubMed ID: 26210400
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Noise models and cryo-EM drift correction with a direct-electron camera.
    Shigematsu H; Sigworth FJ
    Ultramicroscopy; 2013 Aug; 131():61-9. PubMed ID: 23748163
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CDrift: An Algorithm to Correct Linear Drift From A Single High-Resolution STEM Image.
    Bárcena-González G; Guerrero-Lebrero MP; Guerrero E; Yañez A; Nuñez-Moraleda B; Fernández-Reyes D; Real P; González D; Galindo PL
    Microsc Microanal; 2020 Oct; 26(5):913-920. PubMed ID: 32703333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of drift correction precision on super-resolution localization microscopy.
    Shang M; Huang ZL; Wang Y
    Appl Opt; 2022 May; 61(13):3516-3522. PubMed ID: 36256388
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Test samples for optimizing STORM super-resolution microscopy.
    Metcalf DJ; Edwards R; Kumarswami N; Knight AE
    J Vis Exp; 2013 Sep; (79):. PubMed ID: 24056752
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanometric locking of the tight focus for optical microscopy and tip-enhanced microscopy.
    Hayazawa N; Furusawa K; Kawata S
    Nanotechnology; 2012 Nov; 23(46):465203. PubMed ID: 23092852
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sample preparation toward seamless 3D imaging technique from micrometer to nanometer scale.
    Miyake A; Matsuno J; Toh S
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i24-i25. PubMed ID: 25359821
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of sampling patterns for high-resolution compressed sensing MRI of porous materials: 'learning' from X-ray microcomputed tomography data.
    Karlsons K; DE Kort DW; Sederman AJ; Mantle MD; DE Jong H; Appel M; Gladden LF
    J Microsc; 2019 Nov; 276(2):63-81. PubMed ID: 31587277
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fast, high-precision autofocus on a motorised microscope: Automating blood sample imaging on the OpenFlexure Microscope.
    Knapper J; Collins JT; Stirling J; McDermott S; Wadsworth W; Bowman RW
    J Microsc; 2022 Jan; 285(1):29-39. PubMed ID: 34625963
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Revolving scanning transmission electron microscopy: correcting sample drift distortion without prior knowledge.
    Sang X; LeBeau JM
    Ultramicroscopy; 2014 Mar; 138():28-35. PubMed ID: 24444498
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A specimen-drift-free EDX mapping system in a STEM for observing two-dimensional profiles of low dose elements in fine semiconductor devices.
    Tsuneta R; Koguchi M; Nakamura K; Nishida A
    J Electron Microsc (Tokyo); 2002; 51(3):167-71. PubMed ID: 12113624
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Real-time quantitative elemental analysis and mapping: microchemical imaging in cell physiology.
    LeFurgey A; Davilla SD; Kopf DA; Sommer JR; Ingram P
    J Microsc; 1992 Feb; 165(Pt 2):191-223. PubMed ID: 1564720
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low axial drift stage and temperature controlled liquid cell for z-scan fluorescence correlation spectroscopy in an inverted confocal geometry.
    Allgeyer ES; Sterling SM; Neivandt DJ; Mason MD
    Rev Sci Instrum; 2011 May; 82(5):053708. PubMed ID: 21639508
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Real-space post-processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images.
    Yothers MP; Browder AE; Bumm LA
    Rev Sci Instrum; 2017 Jan; 88(1):013708. PubMed ID: 28147674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single shot holographic super-resolution microscopy.
    Siegel N; Brooker G
    Opt Express; 2021 May; 29(11):15953-15968. PubMed ID: 34154169
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.