These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24380402)

  • 1. Capturing wetting states in nanopatterned silicon.
    Xu X; Vereecke G; Chen C; Pourtois G; Armini S; Verellen N; Tsai WK; Kim DW; Lee E; Lin CY; Van Dorpe P; Struyf H; Holsteyns F; Moshchalkov V; Indekeu J; De Gendt S
    ACS Nano; 2014 Jan; 8(1):885-93. PubMed ID: 24380402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freeze fracture approach to directly visualize wetting transitions on nanopatterned superhydrophobic silicon surfaces: more than a proof of principle.
    Wiedemann S; Plettl A; Walther P; Ziemann P
    Langmuir; 2013 Jan; 29(3):913-9. PubMed ID: 23259773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the Effects of Nanopatterned Surfaces on Wetting States of Droplets.
    Xiao K; Zhao Y; Ouyang G; Li X
    Nanoscale Res Lett; 2017 Dec; 12(1):309. PubMed ID: 28449550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces.
    Zheng QS; Yu Y; Zhao ZH
    Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY; Cansoy CE
    Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale.
    Leroy F; Müller-Plathe F
    Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully reversible transition from Wenzel to Cassie-Baxter states on corrugated superhydrophobic surfaces.
    Vrancken RJ; Kusumaatmaja H; Hermans K; Prenen AM; Pierre-Louis O; Bastiaansen CW; Broer DJ
    Langmuir; 2010 Mar; 26(5):3335-41. PubMed ID: 19928892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of geometrical characteristics of surface roughness on droplet wetting.
    Sheng YJ; Jiang S; Tsao HK
    J Chem Phys; 2007 Dec; 127(23):234704. PubMed ID: 18154406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions.
    Nosonovsky M; Bhushan B
    Langmuir; 2008 Feb; 24(4):1525-33. PubMed ID: 18072794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superhydrophobic Breakdown of Nanostructured Surfaces Characterized in Situ Using ATR-FTIR.
    Vrancken N; Sergeant S; Vereecke G; Doumen G; Holsteyns F; Terryn H; De Gendt S; Xu X
    Langmuir; 2017 Apr; 33(15):3601-3609. PubMed ID: 28335608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activated Wetting of Nanostructured Surfaces: Reaction Coordinates, Finite Size Effects, and Simulation Pitfalls.
    Amabili M; Meloni S; Giacomello A; Casciola CM
    J Phys Chem B; 2018 Jan; 122(1):200-212. PubMed ID: 29200302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A stable intermediate wetting state after a water drop contacts the bottom of a microchannel or is placed on a single corner.
    Luo C; Xiang M; Heng X
    Langmuir; 2012 Jun; 28(25):9554-61. PubMed ID: 22639865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cassie-Baxter and Wenzel states on a nanostructured surface: phase diagram, metastabilities, and transition mechanism by atomistic free energy calculations.
    Giacomello A; Meloni S; Chinappi M; Casciola CM
    Langmuir; 2012 Jul; 28(29):10764-72. PubMed ID: 22708630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control over wettability of polyethylene glycol surfaces using capillary lithography.
    Suh KY; Jon S
    Langmuir; 2005 Jul; 21(15):6836-41. PubMed ID: 16008394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progress in understanding wetting transitions on rough surfaces.
    Bormashenko E
    Adv Colloid Interface Sci; 2015 Aug; 222():92-103. PubMed ID: 24594103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wetting transition from the Cassie-Baxter state to the Wenzel state on textured polymer surfaces.
    Murakami D; Jinnai H; Takahara A
    Langmuir; 2014 Mar; 30(8):2061-7. PubMed ID: 24494786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure induced transition between superhydrophobic states: configuration diagrams and effect of surface feature size.
    Liu B; Lange FF
    J Colloid Interface Sci; 2006 Jun; 298(2):899-909. PubMed ID: 16480735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wetting behavior and nanotribological properties of silicon nanopatterns combined with diamond-like carbon and perfluoropolyether films.
    Pham DC; Na K; Piao S; Cho IJ; Jhang KY; Yoon ES
    Nanotechnology; 2011 Sep; 22(39):395303. PubMed ID: 21896974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.