BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

974 related articles for article (PubMed ID: 24380473)

  • 1. The evaluation and quantification of respirable coal and silica dust concentrations: a task-based approach.
    Grové T; Van Dyk T; Franken A; Du Plessis J
    J Occup Environ Hyg; 2014; 11(6):406-14. PubMed ID: 24380473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of respirable dust exposure among coal miners in South Africa.
    Naidoo R; Seixas N; Robins T
    J Occup Environ Hyg; 2006 Jun; 3(6):293-300. PubMed ID: 16621766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occupational exposure to crystalline silica at Alberta work sites.
    Radnoff D; Todor MS; Beach J
    J Occup Environ Hyg; 2014; 11(9):557-70. PubMed ID: 24479465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental study on effects of drilling parameters on respirable dust production during roof bolting operations.
    Jiang H; Luo Y; McQuerrey J
    J Occup Environ Hyg; 2018 Feb; 15(2):143-151. PubMed ID: 29157141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A critique of MSHA procedures for determination of permissible respirable coal mine dust containing free silica.
    Corn M; Breysse P; Hall T; Chen G; Risby T; Swift DL
    Am Ind Hyg Assoc J; 1985 Jan; 46(1):4-8. PubMed ID: 2992262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field evaluation of an engineering control for respirable crystalline silica exposures during mortar removal.
    Collingwood S; Heitbrink WA
    J Occup Environ Hyg; 2007 Nov; 4(11):875-87. PubMed ID: 17917951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Exposure to silica dust in coal-mining. Analysis based on measurements made by industrial hygiene laboratories in Poland, 2001-2005].
    Mikołajczyk U; Bujak-Pietrek S; Szadkowska-Stańczyk I
    Med Pr; 2010; 61(3):287-97. PubMed ID: 20677428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field investigation to measure airflow velocities of a ram dump car using circular routing at a Midwestern underground coal mine: a case study.
    Reed WR; Shahan M; Ross G; Singh K; Cross R; Grounds T
    Environ Monit Assess; 2019 Jul; 191(8):515. PubMed ID: 31346812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equivalency of a personal dust monitor to the current United States coal mine respirable dust sampler.
    Page SJ; Volkwein JC; Vinson RP; Joy GJ; Mischler SE; Tuchman DP; McWilliams LJ
    J Environ Monit; 2008 Jan; 10(1):96-101. PubMed ID: 18175022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Airborne crystalline silica concentrations at coal-fired power plants associated with coal fly ash.
    Hicks J; Yager J
    J Occup Environ Hyg; 2006 Aug; 3(8):448-55. PubMed ID: 16862716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High exposure to respirable dust and quartz in a labour-intensive coal mine in Tanzania.
    Mamuya SH; Bråtveit M; Mwaiselage J; Mashalla YJ; Moen BE
    Ann Occup Hyg; 2006 Mar; 50(2):197-204. PubMed ID: 16143714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laboratory evaluation to reduce respirable crystalline silica dust when cutting concrete roofing tiles using a masonry saw.
    Carlo RV; Sheehy J; Feng HA; Sieber WK
    J Occup Environ Hyg; 2010 Apr; 7(4):245-51. PubMed ID: 20169490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An evaluation of on-tool shrouds for controlling respirable crystalline silica in restoration stone work.
    Healy CB; Coggins MA; Van Tongeren M; MacCalman L; McGowan P
    Ann Occup Hyg; 2014 Nov; 58(9):1155-67. PubMed ID: 25261456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exposure to respirable crystalline silica in the construction industry-do we have a problem?
    McLean D; Glass B; 't Mannetje A; Douwes J
    N Z Med J; 2017 Dec; 130(1466):78-82. PubMed ID: 29197904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing silica and dust exposures in construction during use of powered concrete-cutting hand tools: efficacy of local exhaust ventilation on hammer drills.
    Shepherd S; Woskie SR; Holcroft C; Ellenbecker M
    J Occup Environ Hyg; 2009 Jan; 6(1):42-51. PubMed ID: 19005968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occupational Exposure to Respirable Dust, Respirable Crystalline Silica and Diesel Engine Exhaust Emissions in the London Tunnelling Environment.
    Galea KS; Mair C; Alexander C; de Vocht F; van Tongeren M
    Ann Occup Hyg; 2016 Mar; 60(2):263-9. PubMed ID: 26403363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating historical respirable crystalline silica exposures for Chinese pottery workers and iron/copper, tin, and tungsten miners.
    Zhuang Z; Hearl FJ; Odencrantz J; Chen W; Chen BT; Chen JQ; McCawley MA; Gao P; Soderholm SC
    Ann Occup Hyg; 2001 Nov; 45(8):631-42. PubMed ID: 11718659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promoting early exposure monitoring for respirable crystalline silica: Taking the laboratory to the mine site.
    Cauda E; Miller A; Drake P
    J Occup Environ Hyg; 2016; 13(3):D39-45. PubMed ID: 26558490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silica exposure in a mining exploration operation.
    Arrandale VH; Kalenge S; Demers PA
    Arch Environ Occup Health; 2018; 73(6):351-354. PubMed ID: 29283843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Respirable dust exposures in U.S. surface coal mines (1982-1986).
    Piacitelli GM; Amandus HE; Dieffenbach A
    Arch Environ Health; 1990; 45(4):202-9. PubMed ID: 2169228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 49.