These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 24380534)
1. Textural and mineralogical characteristics of microbial fossils associated with modern and ancient iron (oxyhydr)oxides: terrestrial analogue for sediments in Gale Crater. Potter-McIntyre SL; Chan MA; McPherson BJ Astrobiology; 2014 Jan; 14(1):1-14. PubMed ID: 24380534 [TBL] [Abstract][Full Text] [Related]
2. Taphonomy of Microbial Biosignatures in Spring Deposits: A Comparison of Modern, Quaternary, and Jurassic Examples. Potter-McIntyre SL; Williams J; Phillips-Lander C; O'Connell L Astrobiology; 2017 Mar; 17(3):216-230. PubMed ID: 28323483 [TBL] [Abstract][Full Text] [Related]
3. Preserved Filamentous Microbial Biosignatures in the Brick Flat Gossan, Iron Mountain, California. Williams AJ; Sumner DY; Alpers CN; Karunatillake S; Hofmann BA Astrobiology; 2015 Aug; 15(8):637-68. PubMed ID: 26247371 [TBL] [Abstract][Full Text] [Related]
4. Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars. McLennan SM; Anderson RB; Bell JF; Bridges JC; Calef F; Campbell JL; Clark BC; Clegg S; Conrad P; Cousin A; Des Marais DJ; Dromart G; Dyar MD; Edgar LA; Ehlmann BL; Fabre C; Forni O; Gasnault O; Gellert R; Gordon S; Grant JA; Grotzinger JP; Gupta S; Herkenhoff KE; Hurowitz JA; King PL; Le Mouélic S; Leshin LA; Léveillé R; Lewis KW; Mangold N; Maurice S; Ming DW; Morris RV; Nachon M; Newsom HE; Ollila AM; Perrett GM; Rice MS; Schmidt ME; Schwenzer SP; Stack K; Stolper EM; Sumner DY; Treiman AH; VanBommel S; Vaniman DT; Vasavada A; Wiens RC; Yingst RA; Science; 2014 Jan; 343(6169):1244734. PubMed ID: 24324274 [TBL] [Abstract][Full Text] [Related]
5. Fe-Rich Fossil Vents as Mars Analog Samples: Identification of Extinct Chimneys in Miocene Marine Sediments Using Raman Spectroscopy, X-Ray Diffraction, and Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy. Demaret L; Hutchinson IB; Ingley R; Edwards HGM; Fagel N; Compere P; Javaux EJ; Eppe G; Malherbe C Astrobiology; 2022 Sep; 22(9):1081-1098. PubMed ID: 35704291 [TBL] [Abstract][Full Text] [Related]
6. Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars. Vaniman DT; Bish DL; Ming DW; Bristow TF; Morris RV; Blake DF; Chipera SJ; Morrison SM; Treiman AH; Rampe EB; Rice M; Achilles CN; Grotzinger JP; McLennan SM; Williams J; Bell JF; Newsom HE; Downs RT; Maurice S; Sarrazin P; Yen AS; Morookian JM; Farmer JD; Stack K; Milliken RE; Ehlmann BL; Sumner DY; Berger G; Crisp JA; Hurowitz JA; Anderson R; Des Marais DJ; Stolper EM; Edgett KS; Gupta S; Spanovich N; Science; 2014 Jan; 343(6169):1243480. PubMed ID: 24324271 [TBL] [Abstract][Full Text] [Related]
8. A Hierarchical System for Evaluating the Biogenicity of Metavolcanic- and Ultramafic-Hosted Microalteration Textures in the Search for Extraterrestrial Life. McLoughlin N; Grosch EG Astrobiology; 2015 Oct; 15(10):901-21. PubMed ID: 26496528 [TBL] [Abstract][Full Text] [Related]
9. A Mossbauer investigation of iron-rich terrestrial hydrothermal vent systems: lessons for Mars exploration. Wade ML; Agresti DG; Wdowiak TJ; Armendarez LP; Farmer JD J Geophys Res; 1999 Apr; 104(E4):8489-507. PubMed ID: 11542933 [TBL] [Abstract][Full Text] [Related]
10. Simulating Mars Drilling Mission for Searching for Life: Sánchez-García L; Fernández-Martínez MA; Moreno-Paz M; Carrizo D; García-Villadangos M; Manchado JM; Stoker CR; Glass B; Parro V Astrobiology; 2020 Sep; 20(9):1029-1047. PubMed ID: 31916858 [TBL] [Abstract][Full Text] [Related]
11. Multi-Technique Characterization of 3.45 Ga Microfossils on Earth: A Key Approach to Detect Possible Traces of Life in Returned Samples from Mars. Clodoré L; Foucher F; Hickman-Lewis K; Sorieul S; Jouve J; Réfrégiers M; Collet G; Petoud S; Gratuze B; Westall F Astrobiology; 2024 Feb; 24(2):190-226. PubMed ID: 38393828 [TBL] [Abstract][Full Text] [Related]
12. Quantifying the Potential for Nitrate-Dependent Iron Oxidation on Early Mars: Implications for the Interpretation of Gale Crater Organics. Fifer LM; Wong ML Astrobiology; 2024 Jun; 24(6):590-603. PubMed ID: 38805190 [TBL] [Abstract][Full Text] [Related]
13. Ancient sedimentary structures in the <3.7 Ga Gillespie Lake Member, Mars, that resemble macroscopic morphology, spatial associations, and temporal succession in terrestrial microbialites. Noffke N Astrobiology; 2015 Feb; 15(2):169-92. PubMed ID: 25495393 [TBL] [Abstract][Full Text] [Related]
14. Microbially Induced Sedimentary Structures in Clastic Deposits: Implication for the Prospection for Fossil Life on Mars. Noffke N Astrobiology; 2021 Jul; 21(7):866-892. PubMed ID: 34042490 [TBL] [Abstract][Full Text] [Related]
15. Ancient Siliciclastic-Evaporites as Seen by Remote Sensing Instrumentation with Implications for the Rover-Scale Exploration of Sedimentary Environments on Mars. Meyer MJ; Milliken RE; Hurowitz JE; Robertson KM Astrobiology; 2023 May; 23(5):477-495. PubMed ID: 36944138 [TBL] [Abstract][Full Text] [Related]
16. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars. Grotzinger JP; Sumner DY; Kah LC; Stack K; Gupta S; Edgar L; Rubin D; Lewis K; Schieber J; Mangold N; Milliken R; Conrad PG; DesMarais D; Farmer J; Siebach K; Calef F; Hurowitz J; McLennan SM; Ming D; Vaniman D; Crisp J; Vasavada A; Edgett KS; Malin M; Blake D; Gellert R; Mahaffy P; Wiens RC; Maurice S; Grant JA; Wilson S; Anderson RC; Beegle L; Arvidson R; Hallet B; Sletten RS; Rice M; Bell J; Griffes J; Ehlmann B; Anderson RB; Bristow TF; Dietrich WE; Dromart G; Eigenbrode J; Fraeman A; Hardgrove C; Herkenhoff K; Jandura L; Kocurek G; Lee S; Leshin LA; Leveille R; Limonadi D; Maki J; McCloskey S; Meyer M; Minitti M; Newsom H; Oehler D; Okon A; Palucis M; Parker T; Rowland S; Schmidt M; Squyres S; Steele A; Stolper E; Summons R; Treiman A; Williams R; Yingst A; Science; 2014 Jan; 343(6169):1242777. PubMed ID: 24324272 [TBL] [Abstract][Full Text] [Related]
17. Ultrastructural study of iron oxide precipitates: implications for the search for biosignatures in the Meridiani hematite concretions, Mars. Souza-Egipsy V; Ormö J; Beitler Bowen B; Chan MA; Komatsu G Astrobiology; 2006 Aug; 6(4):527-45. PubMed ID: 16916280 [TBL] [Abstract][Full Text] [Related]
18. Investigating Microbial Biosignatures in Aeolian Environments Using Micro-X-Ray: Simulation of PIXL Instrument Analyses at Jezero Crater Onboard the Perseverance Mars 2020 Rover. Nachon M; Ewing RC; Tice MM; Williford B; Marounina N Astrobiology; 2024 May; 24(5):498-517. PubMed ID: 38768431 [TBL] [Abstract][Full Text] [Related]
19. Importance of a martian hematite site for astrobiology. Allen CC; Westall F; Schelble RT Astrobiology; 2001; 1(1):111-23. PubMed ID: 12448998 [TBL] [Abstract][Full Text] [Related]
20. Classification of modern and old Río Tinto sedimentary deposits through the biomolecular record using a life marker biochip: implications for detecting life on Mars. Parro V; Fernández-Remolar D; Rodríguez-Manfredi JA; Cruz-Gil P; Rivas LA; Ruiz-Bermejo M; Moreno-Paz M; García-Villadangos M; Gómez-Ortiz D; Blanco-López Y; Menor-Salván C; Prieto-Ballesteros O; Gómez-Elvira J Astrobiology; 2011; 11(1):29-44. PubMed ID: 21294642 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]