These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24380598)

  • 1. Computational models of large-scale genome architecture.
    Rosa A; Zimmer C
    Int Rev Cell Mol Biol; 2014; 307():275-349. PubMed ID: 24380598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical properties of the chromosomes and implications for development.
    Sugawara T; Kimura A
    Dev Growth Differ; 2017 Jun; 59(5):405-414. PubMed ID: 28573677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture.
    Cremer T; Kreth G; Koester H; Fink RH; Heintzmann R; Cremer M; Solovei I; Zink D; Cremer C
    Crit Rev Eukaryot Gene Expr; 2000; 10(2):179-212. PubMed ID: 11186332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A predictive computational model of the dynamic 3D interphase yeast nucleus.
    Wong H; Marie-Nelly H; Herbert S; Carrivain P; Blanc H; Koszul R; Fabre E; Zimmer C
    Curr Biol; 2012 Oct; 22(20):1881-90. PubMed ID: 22940469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crowding-induced formation and structural alteration of nuclear compartments: insights from computer simulations.
    Kim JS; Szleifer I
    Int Rev Cell Mol Biol; 2014; 307():73-108. PubMed ID: 24380593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relevance and limitations of crowding, fractal, and polymer models to describe nuclear architecture.
    Huet S; Lavelle C; Ranchon H; Carrivain P; Victor JM; Bancaud A
    Int Rev Cell Mol Biol; 2014; 307():443-79. PubMed ID: 24380602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale data-driven and physics-based models offer insights into the relationships among the structures, dynamics, and functions of chromosomes.
    Feng C; Wang J; Chu X
    J Mol Cell Biol; 2023 Nov; 15(6):. PubMed ID: 37365687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restraint-based three-dimensional modeling of genomes and genomic domains.
    Serra F; Di Stefano M; Spill YG; Cuartero Y; Goodstadt M; Baù D; Marti-Renom MA
    FEBS Lett; 2015 Oct; 589(20 Pt A):2987-95. PubMed ID: 25980604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How to build a yeast nucleus.
    Wong H; Arbona JM; Zimmer C
    Nucleus; 2013; 4(5):361-6. PubMed ID: 23974728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physics-Based Polymer Models to Probe Chromosome Structure in Single Molecules.
    Conte M; Chiariello AM; Bianco S; Esposito A; Abraham A; Nicodemi M
    Methods Mol Biol; 2023; 2655():57-66. PubMed ID: 37212988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene order and dynamic domains.
    Kosak ST; Groudine M
    Science; 2004 Oct; 306(5696):644-7. PubMed ID: 15499009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic pathways to genome spatial organization in the cell nucleus.
    Nicodemi M; Prisco A
    Biophys J; 2009 Mar; 96(6):2168-77. PubMed ID: 19289043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex interchanges as a complex function of chromosome organisation.
    Eidelman YA; Andreev SG
    Radiat Prot Dosimetry; 2011 Feb; 143(2-4):202-6. PubMed ID: 21109545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational predictions of structures of multichromosomes of budding yeast.
    Gürsoy G; Xu Y; Liang J
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3945-8. PubMed ID: 25570855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The function of nuclear architecture: a genetic approach.
    Taddei A; Hediger F; Neumann FR; Gasser SM
    Annu Rev Genet; 2004; 38():305-45. PubMed ID: 15568979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How the Genome Folds: The Biophysics of Four-Dimensional Chromatin Organization.
    Parmar JJ; Woringer M; Zimmer C
    Annu Rev Biophys; 2019 May; 48():231-253. PubMed ID: 30835504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D genome structure modeling by Lorentzian objective function.
    Trieu T; Cheng J
    Nucleic Acids Res; 2017 Feb; 45(3):1049-1058. PubMed ID: 28180292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous diffusion, spatial coherence, and viscoelasticity from the energy landscape of human chromosomes.
    Di Pierro M; Potoyan DA; Wolynes PG; Onuchic JN
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7753-7758. PubMed ID: 29987017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide mapping and analysis of chromosome architecture.
    Schmitt AD; Hu M; Ren B
    Nat Rev Mol Cell Biol; 2016 Dec; 17(12):743-755. PubMed ID: 27580841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.