BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24380974)

  • 1. Fates of Microcystis aeruginosa cells and associated microcystins in sediment and the effect of coagulation process on them.
    Chen X; Xiang H; Hu Y; Zhang Y; Ouyang L; Gao M
    Toxins (Basel); 2013 Dec; 6(1):152-67. PubMed ID: 24380974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of lanthanum on Microcystis aeruginosa: Attention to the changes in composition and content of cellular microcystins.
    Shen F; Wang L; Zhou Q; Huang X
    Aquat Toxicol; 2018 Mar; 196():9-16. PubMed ID: 29324395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blooming of Microcystis aeruginosa in the reservoir of the reclaimed land and discharge of microcystins to Isahaya Bay (Japan).
    Umehara A; Tsutsumi H; Takahashi T
    Environ Sci Pollut Res Int; 2012 Sep; 19(8):3257-67. PubMed ID: 22374190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the potential of anoxic biodegradation of intracellular and dissolved microcystins in lake sediments.
    Wu X; Wang C; Tian C; Xiao B; Song L
    J Hazard Mater; 2015 Apr; 286():395-401. PubMed ID: 25603288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fate of Microcystis aeruginosa cells during the ferric chloride coagulation and flocs storage processes.
    Li X; Pei H; Hu W; Meng P; Sun F; Ma G; Xu X; Li Y
    Environ Technol; 2015; 36(5-8):920-8. PubMed ID: 25241771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The behaviors of Microcystis aeruginosa and microcystins during the Fe
    Song Q; Niu X; Zhang D; Song X; Li Y; Ma J; Lai S; Yang Z; Zhou S
    Environ Res; 2020 Jul; 186():109549. PubMed ID: 32325291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of chlorination on Microcystis aeruginosa cell integrity and subsequent microcystin release and degradation.
    Daly RI; Ho L; Brookes JD
    Environ Sci Technol; 2007 Jun; 41(12):4447-53. PubMed ID: 17626450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Isolation and activity of bacteria for the biodegradation of microcystins].
    Yan H; Deng YM; Zou H; Li XL; Ye CM
    Huan Jing Ke Xue; 2004 Nov; 25(6):49-53. PubMed ID: 15759880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavior of Cylindrospermopsis raciborskii during coagulation and sludge storage - higher potential risk of toxin release than Microcystis aeruginosa?
    Li H; Pei H; Xu H; Jin Y; Sun J
    J Hazard Mater; 2018 Apr; 347():307-316. PubMed ID: 29331810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous Microcystis algicidal and microcystin synthesis inhibition by a red pigment prodigiosin.
    Wei J; Xie X; Huang F; Xiang L; Wang Y; Han T; Massey IY; Liang G; Pu Y; Yang F
    Environ Pollut; 2020 Jan; 256():113444. PubMed ID: 31676094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grazing on Microcystis aeruginosa and degradation of microcystins by the heterotrophic flagellate Diphylleia rotans.
    Mohamed ZA; Al-Shehri AM
    Ecotoxicol Environ Saf; 2013 Oct; 96():48-52. PubMed ID: 23856124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of divalent metals Cu
    Ao D; Lei Z; Dzakpasu M; Chen R
    Toxicon; 2019 Dec; 170():51-59. PubMed ID: 31526809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerium exposure in Lake Taihu water aggravates microcystin pollution via enhancing endocytosis of Microcystis aeruginosa.
    Yang Q; Liu Y; Wang L; Zhou Q; Cheng M; Zhou J; Huang X
    Environ Pollut; 2022 Jan; 292(Pt A):118308. PubMed ID: 34626705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of production and sedimentation of cyanobacterial toxins (microcystin) based on nutrient budgets in the reservoir of Isahaya Bay, Japan.
    Umehara A; Komorita T; Takahashi T; Tsutsumi H
    Ecotoxicol Environ Saf; 2019 Nov; 183():109477. PubMed ID: 31369939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction in microcystin concentrations in large and shallow lakes: water and sediment-interface contributions.
    Chen W; Song L; Peng L; Wan N; Zhang X; Gan N
    Water Res; 2008 Feb; 42(3):763-73. PubMed ID: 17761208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fe
    Tian X; Li Y; Xu H; Pang Y; Zhang J; Pei H
    J Hazard Mater; 2021 Jun; 412():125206. PubMed ID: 33516101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of temperature on the translocation of exogenous 32P in water column, Microcystis aeruginosa and sediments].
    Shi X; Wang F; Jiang L; Zhou Z; Yang L; Kong Z; Gao G; Qin B
    Ying Yong Sheng Tai Xue Bao; 2003 Nov; 14(11):1967-70. PubMed ID: 14997658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of a Poterioochromonas capable of feeding on Microcystis aeruginosa and degrading microcystin-LR.
    Zhang X; Hu HY; Hong Y; Yang J
    FEMS Microbiol Lett; 2008 Nov; 288(2):241-6. PubMed ID: 18811657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feedback Regulation between Aquatic Microorganisms and the Bloom-Forming Cyanobacterium
    Zhang M; Lu T; Paerl HW; Chen Y; Zhang Z; Zhou Z; Qian H
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31420344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is a Central Sediment Sample Sufficient? Exploring Spatial and Temporal Microbial Diversity in a Small Lake.
    Weisbrod B; Wood SA; Steiner K; Whyte-Wilding R; Puddick J; Laroche O; Dietrich DR
    Toxins (Basel); 2020 Sep; 12(9):. PubMed ID: 32916957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.