These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24380997)

  • 1. Kinect technology for hand tracking control of surgical robots: technical and surgical skill comparison to current robotic masters.
    Kim Y; Leonard S; Shademan A; Krieger A; Kim PC
    Surg Endosc; 2014 Jun; 28(6):1993-2000. PubMed ID: 24380997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A development of assistant surgical robot system based on surgical-operation-by-wire and hands-on-throttle-and-stick.
    Kim M; Lee C; Park WJ; Suh YS; Yang HK; Kim HJ; Kim S
    Biomed Eng Online; 2016 May; 15(1):58. PubMed ID: 27206350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robotic-assisted minimally invasive surgery for gynecologic and urologic oncology: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2010; 10(27):1-118. PubMed ID: 23074405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cadaveric feasibility study of da Vinci Si-assisted cochlear implant with augmented visual navigation for otologic surgery.
    Liu WP; Azizian M; Sorger J; Taylor RH; Reilly BK; Cleary K; Preciado D
    JAMA Otolaryngol Head Neck Surg; 2014 Mar; 140(3):208-14. PubMed ID: 24457635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Technical review of the da Vinci surgical telemanipulator.
    Freschi C; Ferrari V; Melfi F; Ferrari M; Mosca F; Cuschieri A
    Int J Med Robot; 2013 Dec; 9(4):396-406. PubMed ID: 23166047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel noncontact detection method of surgeon's operation for a master-slave endovascular surgery robot.
    Zhao Y; Xing H; Guo S; Wang Y; Cui J; Ma Y; Liu Y; Liu X; Feng J; Li Y
    Med Biol Eng Comput; 2020 Apr; 58(4):871-885. PubMed ID: 32077011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Output control of da Vinci surgical system's surgical graspers.
    Johnson PJ; Schmidt DE; Duvvuri U
    J Surg Res; 2014 Jan; 186(1):56-62. PubMed ID: 23968806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of IQ, computer-gaming skills, general dexterity, and laparoscopic experience on performance with the da Vinci surgical system.
    Hagen ME; Wagner OJ; Inan I; Morel P
    Int J Med Robot; 2009 Sep; 5(3):327-31. PubMed ID: 19455549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of two simulation systems to support robotic-assisted surgical training: a pilot study (Swine model).
    Whitehurst SV; Lockrow EG; Lendvay TS; Propst AM; Dunlow SG; Rosemeyer CJ; Gobern JM; White LW; Skinner A; Buller JL
    J Minim Invasive Gynecol; 2015; 22(3):483-8. PubMed ID: 25543068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robot-assisted anterior lumbar interbody fusion in a Swine model in vivo test of the da vinci surgical-assisted spinal surgery system.
    Yang MS; Yoon DH; Kim KN; Kim H; Yang JW; Yi S; Lee JY; Jung WJ; Rha KH; Ha Y
    Spine (Phila Pa 1976); 2011 Jan; 36(2):E139-43. PubMed ID: 20948463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The da Vinci robotic surgical assisted anterior lumbar interbody fusion: technical development and case report.
    Beutler WJ; Peppelman WC; DiMarco LA
    Spine (Phila Pa 1976); 2013 Feb; 38(4):356-63. PubMed ID: 22842558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robotic laparoscopic distal gastrectomy: a comparison of the da Vinci and Zeus systems.
    Kakeji Y; Konishi K; Ieiri S; Yasunaga T; Nakamoto M; Tanoue K; Baba H; Maehara Y; Hashizume M
    Int J Med Robot; 2006 Dec; 2(4):299-304. PubMed ID: 17520647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Haptic tracking control for minimally invasive robotic surgery].
    Xu Z; Song C; Wu W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Jun; 29(3):407-10. PubMed ID: 22826928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Training in robotic surgery using the da VinciĀ® surgical system for left pneumonectomy and lymph node dissection in an animal model.
    Kajiwara N; Kakihana M; Usuda J; Uchida O; Ohira T; Kawate N; Ikeda N
    Ann Thorac Cardiovasc Surg; 2011; 17(5):446-53. PubMed ID: 21881375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early experience with telemanipulative robot-assisted laparoscopic cholecystectomy using da Vinci.
    Kim VB; Chapman WH; Albrecht RJ; Bailey BM; Young JA; Nifong LW; Chitwood WR
    Surg Laparosc Endosc Percutan Tech; 2002 Feb; 12(1):33-40. PubMed ID: 12008760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of stereo endoscope system with its innovative master interface for continuous surgical operation.
    Kim M; Lee C; Hong N; Kim YJ; Kim S
    Biomed Eng Online; 2017 Jun; 16(1):81. PubMed ID: 28646865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An all-joint-control master device for single-port laparoscopic surgery robots.
    Shim S; Kang T; Ji D; Choi H; Joung S; Hong J
    Int J Comput Assist Radiol Surg; 2016 Aug; 11(8):1547-57. PubMed ID: 26872809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robotic approaches to the posterior spine.
    Ponnusamy K; Chewning S; Mohr C
    Spine (Phila Pa 1976); 2009 Sep; 34(19):2104-9. PubMed ID: 19730218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First experiences with the da Vinci operating robot in thoracic surgery.
    Bodner J; Wykypiel H; Wetscher G; Schmid T
    Eur J Cardiothorac Surg; 2004 May; 25(5):844-51. PubMed ID: 15082292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robotic general surgery: current practice, evidence, and perspective.
    Jung M; Morel P; Buehler L; Buchs NC; Hagen ME
    Langenbecks Arch Surg; 2015 Apr; 400(3):283-92. PubMed ID: 25854502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.