These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 24381306)

  • 1. Guilt by rewiring: gene prioritization through network rewiring in genome wide association studies.
    Hou L; Chen M; Zhang CK; Cho J; Zhao H
    Hum Mol Genet; 2014 May; 23(10):2780-90. PubMed ID: 24381306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prioritizing candidate disease genes by network-based boosting of genome-wide association data.
    Lee I; Blom UM; Wang PI; Shim JE; Marcotte EM
    Genome Res; 2011 Jul; 21(7):1109-21. PubMed ID: 21536720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prioritizing Crohn's disease genes by integrating association signals with gene expression implicates monocyte subsets.
    Gettler K; Giri M; Kenigsberg E; Martin J; Chuang LS; Hsu NY; Denson LA; Hyams JS; Griffiths A; Noe JD; Crandall WV; Mack DR; Kellermayer R; Abraham C; Hoffman G; Kugathasan S; Cho JH
    Genes Immun; 2019 Sep; 20(7):577-588. PubMed ID: 30692607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leveraging multiple gene networks to prioritize GWAS candidate genes via network representation learning.
    Wu M; Zeng W; Liu W; Lv H; Chen T; Jiang R
    Methods; 2018 Aug; 145():41-50. PubMed ID: 29874547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prioritisation and network analysis of Crohn's disease susceptibility genes.
    Muraro D; Lauffenburger DA; Simmons A
    PLoS One; 2014; 9(9):e108624. PubMed ID: 25268122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A broken network of susceptibility genes in the monocytes of Crohn's disease patients.
    Liu H; Guan L; Su X; Zhao L; Shu Q; Zhang J
    Life Sci Alliance; 2024 Sep; 7(9):. PubMed ID: 38925865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporating biological pathways via a Markov random field model in genome-wide association studies.
    Chen M; Cho J; Zhao H
    PLoS Genet; 2011 Apr; 7(4):e1001353. PubMed ID: 21490723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting protein-protein interaction networks for genome-wide disease-gene prioritization.
    Guney E; Oliva B
    PLoS One; 2012; 7(9):e43557. PubMed ID: 23028459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting disease-related subnetworks for type 1 diabetes using a new network activity score.
    Gao S; Jia S; Hessner MJ; Wang X
    OMICS; 2012 Oct; 16(10):566-78. PubMed ID: 22917479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SEPARATING THE CAUSES AND CONSEQUENCES IN DISEASE TRANSCRIPTOME.
    Li YF; Xin F; Altman RB
    Pac Symp Biocomput; 2016; 21():381-92. PubMed ID: 26776202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishing gene regulatory networks from Parkinson's disease risk loci.
    Farrow SL; Schierding W; Gokuladhas S; Golovina E; Fadason T; Cooper AA; O'Sullivan JM
    Brain; 2022 Jul; 145(7):2422-2435. PubMed ID: 35094046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology.
    Rossin EJ; Lage K; Raychaudhuri S; Xavier RJ; Tatar D; Benita Y; ; Cotsapas C; Daly MJ
    PLoS Genet; 2011 Jan; 7(1):e1001273. PubMed ID: 21249183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying biomarkers for breast cancer by gene regulatory network rewiring.
    Wang Y; Liu ZP
    BMC Bioinformatics; 2022 Jan; 22(Suppl 12):308. PubMed ID: 35045805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repositioning drugs by targeting network modules: a Parkinson's disease case study.
    Yue Z; Arora I; Zhang EY; Laufer V; Bridges SL; Chen JY
    BMC Bioinformatics; 2017 Dec; 18(Suppl 14):532. PubMed ID: 29297292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporating functional annotation information in prioritizing disease associated SNPs from genome wide association studies.
    Hou L; Ma T; Zhao H
    Sci China Life Sci; 2014 Nov; 57(11):1072-9. PubMed ID: 25326070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epistasis network centrality analysis yields pathway replication across two GWAS cohorts for bipolar disorder.
    Pandey A; Davis NA; White BC; Pajewski NM; Savitz J; Drevets WC; McKinney BA
    Transl Psychiatry; 2012 Aug; 2(8):e154. PubMed ID: 22892719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of novel susceptibility genes associated with seven autoimmune disorders using whole genome molecular interaction networks.
    Kara S; Pirela-Morillo GA; Gilliam CT; Wilson GD
    J Autoimmun; 2019 Feb; 97():48-58. PubMed ID: 30391024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iPINBPA: an integrative network-based functional module discovery tool for genome-wide association studies.
    Wang L; Mousavi P; Baranzini SE
    Pac Symp Biocomput; 2015; ():255-66. PubMed ID: 25592586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integration of genome-wide association study and gene expression profiling to prioritize the discovery of novel susceptibility Loci for osteoporosis-related traits.
    Hsu YH; Zillikens MC; Wilson SG; Farber CR; Demissie S; Soranzo N; Bianchi EN; Grundberg E; Liang L; Richards JB; Estrada K; Zhou Y; van Nas A; Moffatt MF; Zhai G; Hofman A; van Meurs JB; Pols HA; Price RI; Nilsson O; Pastinen T; Cupples LA; Lusis AJ; Schadt EE; Ferrari S; Uitterlinden AG; Rivadeneira F; Spector TD; Karasik D; Kiel DP
    PLoS Genet; 2010 Jun; 6(6):e1000977. PubMed ID: 20548944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network.
    Linghu B; Snitkin ES; Hu Z; Xia Y; Delisi C
    Genome Biol; 2009; 10(9):R91. PubMed ID: 19728866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.