These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 24381539)

  • 1. GLMdenoise: a fast, automated technique for denoising task-based fMRI data.
    Kay KN; Rokem A; Winawer J; Dougherty RF; Wandell BA
    Front Neurosci; 2013; 7():247. PubMed ID: 24381539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GLMdenoise improves multivariate pattern analysis of fMRI data.
    Charest I; Kriegeskorte N; Kay KN
    Neuroimage; 2018 Dec; 183():606-616. PubMed ID: 30170148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The optimized combination of aCompCor and ICA-AROMA to reduce motion and physiologic noise in task fMRI data.
    Van Schuerbeek P; De Wandel L; Baeken C
    Biomed Phys Eng Express; 2022 Jul; 8(5):. PubMed ID: 35378526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological denoising of BOLD fMRI data using Regressor Interpolation at Progressive Time Delays (RIPTiDe) processing of concurrent fMRI and near-infrared spectroscopy (NIRS).
    Frederick Bd; Nickerson LD; Tong Y
    Neuroimage; 2012 Apr; 60(3):1913-23. PubMed ID: 22342801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MP-PCA denoising of fMRI time-series data can lead to artificial activation "spreading".
    Fernandes FF; Olesen JL; Jespersen SN; Shemesh N
    Neuroimage; 2023 Jun; 273():120118. PubMed ID: 37062372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing the efficacy of data-driven denoising methods for a multi-echo fMRI acquisition at 7T.
    Beckers AB; Drenthen GS; Jansen JFA; Backes WH; Poser BA; Keszthelyi D
    Neuroimage; 2023 Oct; 280():120361. PubMed ID: 37669723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the accuracy of single-trial fMRI response estimates using GLMsingle.
    Prince JS; Charest I; Kurzawski JW; Pyles JA; Tarr MJ; Kay KN
    Elife; 2022 Nov; 11():. PubMed ID: 36444984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of real-time fMRI denoising on online evaluation of brain activity and functional connectivity.
    Misaki M; Bodurka J
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34126595
    [No Abstract]   [Full Text] [Related]  

  • 9. Improvement of the SNR and resolution of susceptibility-weighted venography by model-based multi-echo denoising.
    Jang U; Nam Y; Kim DH; Hwang D
    Neuroimage; 2013 Apr; 70():308-16. PubMed ID: 23296184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Denoise Functional Magnetic Resonance Imaging With Random Matrix Theory Based Principal Component Analysis.
    Zhu W; Ma X; Zhu XH; Ugurbil K; Chen W; Wu X
    IEEE Trans Biomed Eng; 2022 Nov; 69(11):3377-3388. PubMed ID: 35439125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ground-truth "resting-state" signal provides data-driven estimation and correction for scanner distortion of fMRI time-series dynamics.
    Kumar R; Tan L; Kriegstein A; Lithen A; Polimeni JR; Mujica-Parodi LR; Strey HH
    Neuroimage; 2021 Feb; 227():117584. PubMed ID: 33285328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic independent component labeling for artifact removal in fMRI.
    Tohka J; Foerde K; Aron AR; Tom SM; Toga AW; Poldrack RA
    Neuroimage; 2008 Feb; 39(3):1227-45. PubMed ID: 18042495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ICA-based denoising for ASL perfusion imaging.
    Carone D; Harston GWJ; Garrard J; De Angeli F; Griffanti L; Okell TW; Chappell MA; Kennedy J
    Neuroimage; 2019 Oct; 200():363-372. PubMed ID: 31276796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the use of principal component analysis to reduce physiological noise and motion artifacts to increase the sensitivity of task-based fMRI.
    Soltysik DA; Thomasson D; Rajan S; Biassou N
    J Neurosci Methods; 2015 Feb; 241():18-29. PubMed ID: 25481542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ICA-based denoising strategies in breath-hold induced cerebrovascular reactivity mapping with multi echo BOLD fMRI.
    Moia S; Termenon M; Uruñuela E; Chen G; Stickland RC; Bright MG; Caballero-Gaudes C
    Neuroimage; 2021 Jun; 233():117914. PubMed ID: 33684602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential pitfalls when denoising resting state fMRI data using nuisance regression.
    Bright MG; Tench CR; Murphy K
    Neuroimage; 2017 Jul; 154():159-168. PubMed ID: 28025128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping dependencies of BOLD signal change to end-tidal CO
    Cauzzo S; Callara AL; Morelli MS; Hartwig V; Esposito F; Montanaro D; Passino C; Emdin M; Giannoni A; Vanello N
    J Neurosci Methods; 2021 Oct; 362():109317. PubMed ID: 34380051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data.
    Pruim RHR; Mennes M; van Rooij D; Llera A; Buitelaar JK; Beckmann CF
    Neuroimage; 2015 May; 112():267-277. PubMed ID: 25770991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Task-Correlated Physiological Fluctuations and Motion in 2D and 3D Echo-Planar Imaging in a Higher Cognitive Level fMRI Paradigm.
    Ladstein J; Evensmoen HR; Håberg AK; Kristoffersen A; Goa PE
    Front Neurosci; 2016; 10():225. PubMed ID: 27375405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PHYCAA: data-driven measurement and removal of physiological noise in BOLD fMRI.
    Churchill NW; Yourganov G; Spring R; Rasmussen PM; Lee W; Ween JE; Strother SC
    Neuroimage; 2012 Jan; 59(2):1299-314. PubMed ID: 21871573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.