These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24382140)

  • 1. Thermoplasmonics: quantifying plasmonic heating in single nanowires.
    Herzog JB; Knight MW; Natelson D
    Nano Lett; 2014 Feb; 14(2):499-503. PubMed ID: 24382140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Heating in Au Nanowires at Low Temperatures: The Role of Thermal Boundary Resistance.
    Zolotavin P; Alabastri A; Nordlander P; Natelson D
    ACS Nano; 2016 Jul; 10(7):6972-9. PubMed ID: 27355238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying Optical Absorption of Single Plasmonic Nanoparticles and Nanoparticle Dimers Using Microstring Resonators.
    Rangacharya VP; Wu K; Larsen PE; Thamdrup LHE; Ilchenko O; Hwu ET; Rindzevicius T; Boisen A
    ACS Sens; 2020 Jul; 5(7):2067-2075. PubMed ID: 32529825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial and Temporal Nanoscale Plasmonic Heating Quantified by Thermoreflectance.
    Wang D; Koh YR; Kudyshev ZA; Maize K; Kildishev AV; Boltasseva A; Shalaev VM; Shakouri A
    Nano Lett; 2019 Jun; 19(6):3796-3803. PubMed ID: 31067061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic Heating of Nanostructures.
    Jauffred L; Samadi A; Klingberg H; Bendix PM; Oddershede LB
    Chem Rev; 2019 Jul; 119(13):8087-8130. PubMed ID: 31125213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoplasmonic Semitransparent Nanohole Electrodes.
    Tordera D; Zhao D; Volkov AV; Crispin X; Jonsson MP
    Nano Lett; 2017 May; 17(5):3145-3151. PubMed ID: 28441500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of Field Enhancement in Plasmonic Waveguides for Subwavelength Light-Guiding, Polarization Handling, Heating, and Optical Sensing.
    Dai D; Wu H; Zhang W
    Materials (Basel); 2015 Oct; 8(10):6772-6791. PubMed ID: 28793600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces.
    Li Z; Butun S; Aydin K
    ACS Nano; 2014 Aug; 8(8):8242-8. PubMed ID: 25072803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noble metal nanowires: from plasmon waveguides to passive and active devices.
    Lal S; Hafner JH; Halas NJ; Link S; Nordlander P
    Acc Chem Res; 2012 Nov; 45(11):1887-95. PubMed ID: 23102053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct observation of Au/Ga2O3 peapodded nanowires and their plasmonic behaviors.
    Chen PH; Hsieh CH; Chen SY; Wu CH; Wu YJ; Chou LJ; Chen LJ
    Nano Lett; 2010 Sep; 10(9):3267-71. PubMed ID: 20715805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the Role of the Surfactant and the Thermophoretic Force in Plasmonic Nano-optical Trapping.
    Jiang Q; Rogez B; Claude JB; Baffou G; Wenger J
    Nano Lett; 2020 Dec; 20(12):8811-8817. PubMed ID: 33237789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale Melting of 3D Confined Azopolymers through Tunable Thermoplasmonics.
    Kharintsev SS; Kazarian SG
    J Phys Chem Lett; 2022 Jun; 13(23):5351-5357. PubMed ID: 35678375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic nanoparticle networks for light and heat concentration.
    Sanchot A; Baffou G; Marty R; Arbouet A; Quidant R; Girard C; Dujardin E
    ACS Nano; 2012 Apr; 6(4):3434-40. PubMed ID: 22394263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying Remote Heating from Propagating Surface Plasmon Polaritons.
    Evans CI; Zolotavin P; Alabastri A; Yang J; Nordlander P; Natelson D
    Nano Lett; 2017 Sep; 17(9):5646-5652. PubMed ID: 28796525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing two-dimensional temperature profiles using tunable thermoplasmonics.
    Kharintsev SS; Kharitonov AV; Chernykh EA; Alekseev AM; Filippov NA; Kazarian SG
    Nanoscale; 2022 Aug; 14(33):12117-12128. PubMed ID: 35959760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic heating in optically trapped Au nanoparticles measured by dark-field spectroscopy.
    Andres-Arroyo A; Wang F; Toe WJ; Reece P
    Biomed Opt Express; 2015 Sep; 6(9):3646-54. PubMed ID: 26417530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles.
    Ndukaife JC; Mishra A; Guler U; Nnanna AG; Wereley ST; Boltasseva A
    ACS Nano; 2014 Sep; 8(9):9035-43. PubMed ID: 25144369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarization Selectivity of the Thin-Metal-Film Plasmon-Assisted Fiber-Optic Polarizer.
    Wang X; Lin J; Sun W; Tan Z; Liu R; Wang Z
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):32189-32196. PubMed ID: 32551488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.