These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24382199)

  • 1. In situ transmission electron microscopy investigation on fatigue behavior of single ZnO wires under high-cycle strain.
    Li P; Liao Q; Yang S; Bai X; Huang Y; Yan X; Zhang Z; Liu S; Lin P; Kang Z; Zhang Y
    Nano Lett; 2014 Feb; 14(2):480-5. PubMed ID: 24382199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth Conditions Control the Elastic and Electrical Properties of ZnO Nanowires.
    Wang X; Chen K; Zhang Y; Wan J; Warren OL; Oh J; Li J; Ma E; Shan Z
    Nano Lett; 2015 Dec; 15(12):7886-92. PubMed ID: 26510098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Observation of the Layer-by-Layer Growth of ZnO Nanopillar by In situ High Resolution Transmission Electron Microscopy.
    Li X; Cheng S; Deng S; Wei X; Zhu J; Chen Q
    Sci Rep; 2017 Jan; 7():40911. PubMed ID: 28098261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation on the mechanism of nanodamage and nanofailure for single ZnO nanowires under an electric field.
    Li P; Liao Q; Zhang Z; Wang Z; Lin P; Zhang X; Kang Z; Huang Y; Gu Y; Yan X; Zhang Y
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2344-9. PubMed ID: 24467452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable Mechanical Property and Structural Transition of Silicon Nitride Nanowires Induced by Focused Ion Beam Irradiation.
    Wei B; Deng Q; Ji Y; Wang Z; Han X
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):32175-32181. PubMed ID: 32551486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ observation of size-scale effects on the mechanical properties of ZnO nanowires.
    Asthana A; Momeni K; Prasad A; Yap YK; Yassar RS
    Nanotechnology; 2011 Jul; 22(26):265712. PubMed ID: 21586815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-sensitive detection of zinc oxide nanowires using a quartz crystal microbalance and phosphoric acid DNA.
    Jang K; You J; Park C; Park H; Choi J; Choi CH; Park J; Lee H; Na S
    Nanotechnology; 2016 Sep; 27(36):365501. PubMed ID: 27479871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomistic Interface Dynamics in Sn-Catalyzed Growth of Wurtzite and Zinc-Blende ZnO Nanowires.
    Jia S; Hu S; Zheng H; Wei Y; Meng S; Sheng H; Liu H; Zhou S; Zhao D; Wang J
    Nano Lett; 2018 Jul; 18(7):4095-4099. PubMed ID: 29879357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical properties of ZnO nanowires.
    Wen B; Sader JE; Boland JJ
    Phys Rev Lett; 2008 Oct; 101(17):175502. PubMed ID: 18999761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Temperature Solution Synthesis of Au-Modified ZnO Nanowires for Highly Efficient Hydrogen Nanosensors.
    Lupan O; Postica V; Wolff N; Su J; Labat F; Ciofini I; Cavers H; Adelung R; Polonskyi O; Faupel F; Kienle L; Viana B; Pauporté T
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32115-32126. PubMed ID: 31385698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-cycle fatigue behavior of beta-titanium orthodontic wires.
    Murakami T; Iijima M; Muguruma T; Yano F; Kawashima I; Mizoguchi I
    Dent Mater J; 2015; 34(2):189-95. PubMed ID: 25740165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cl-doped ZnO nanowires with metallic conductivity and their application for high-performance photoelectrochemical electrodes.
    Wang F; Seo JH; Li Z; Kvit AV; Ma Z; Wang X
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1288-93. PubMed ID: 24383705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling the growth of single crystal ZnO nanowires by tuning the atomic layer deposition parameters of the ZnO seed layer.
    Galan-Gonzalez A; Gallant A; Zeze DA; Atkinson D
    Nanotechnology; 2019 Jul; 30(30):305602. PubMed ID: 30974422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of Cu doping on the mechanical and optical properties of zinc oxide nanowires synthesized by hydrothermal route.
    Robak E; Coy E; Kotkowiak M; Jurga S; Załęski K; Drozdowski H
    Nanotechnology; 2016 Apr; 27(17):175706. PubMed ID: 26987563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale elastic modulus of single horizontal ZnO nanorod using nanoindentation experiment.
    Soomro MY; Hussain I; Bano N; Broitman E; Nur O; Willander M
    Nanoscale Res Lett; 2012 Feb; 7(1):146. PubMed ID: 22353250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elasticity size effects in ZnO nanowires--a combined experimental-computational approach.
    Agrawal R; Peng B; Gdoutos EE; Espinosa HD
    Nano Lett; 2008 Nov; 8(11):3668-74. PubMed ID: 18839998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exciton diffusion coefficient measurement in ZnO nanowires under electron beam irradiation.
    Donatini F; Pernot J
    Nanotechnology; 2018 Mar; 29(10):105703. PubMed ID: 29313830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallography-Derived Young's Modulus and Tensile Strength of AlN Nanowires as Revealed by in Situ Transmission Electron Microscopy.
    Firestein KL; Kvashnin DG; Fernando JFS; Zhang C; Siriwardena DP; Sorokin PB; Golberg DV
    Nano Lett; 2019 Mar; 19(3):2084-2091. PubMed ID: 30786716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the strain effect on near band edge emission of a curved ZnO nanowire via spatially resolved cathodoluminescence.
    Xue H; Pan N; Li M; Wu Y; Wang X; Hou JG
    Nanotechnology; 2010 May; 21(21):215701. PubMed ID: 20431205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Four-Point Measurement Setup for Correlative Microscopy of Nanowires.
    Pruchnik BC; Fidelus JD; Gacka E; Kwoka K; Pruchnik J; Piejko A; Usydus Ł; Zaraska L; Sulka GD; Piasecki T; Gotszalk TP
    Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.