These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 24382400)
21. Refractive indices of layers and optical simulations of Cu(In,Ga)Se Carron R; Avancini E; Feurer T; Bissig B; Losio PA; Figi R; Schreiner C; Bürki M; Bourgeois E; Remes Z; Nesladek M; Buecheler S; Tiwari AN Sci Technol Adv Mater; 2018; 19(1):396-410. PubMed ID: 29785230 [TBL] [Abstract][Full Text] [Related]
22. Application of ICP-OES to the determination of CuIn(1-x)Ga(x)Se2 thin films used as absorber materials in solar cell devices. Fernández-Martínez R; Caballero R; Guillén C; Gutiérrez MT; Rucandio MI Anal Bioanal Chem; 2005 May; 382(2):466-70. PubMed ID: 15702309 [TBL] [Abstract][Full Text] [Related]
24. Highly efficient graphene-based Cu(In, Ga)Se₂ solar cells with large active area. Yin L; Zhang K; Luo H; Cheng G; Ma X; Xiong Z; Xiao X Nanoscale; 2014 Sep; 6(18):10879-86. PubMed ID: 25117579 [TBL] [Abstract][Full Text] [Related]
25. Cu(In,Ga)(S,Se)₂ thin film solar cell with 10.7% conversion efficiency obtained by selenization of the Na-doped spray-pyrolyzed sulfide precursor film. Septina W; Kurihara M; Ikeda S; Nakajima Y; Hirano T; Kawasaki Y; Harada T; Matsumura M ACS Appl Mater Interfaces; 2015 Apr; 7(12):6472-9. PubMed ID: 25774908 [TBL] [Abstract][Full Text] [Related]
26. Non-antireflective scheme for efficiency enhancement of Cu(In,Ga)Se2 nanotip array solar cells. Liao YK; Wang YC; Yen YT; Chen CH; Hsieh DH; Chen SC; Lee CY; Lai CC; Kuo WC; Juang JY; Wu KH; Cheng SJ; Lai CH; Lai FI; Kuo SY; Kuo HC; Chueh YL ACS Nano; 2013 Aug; 7(8):7318-29. PubMed ID: 23906340 [TBL] [Abstract][Full Text] [Related]
27. Impact of different Na-incorporating methods on Cu(In,Ga)Se2 thin film solar cells with a low-Na substrate. Ye S; Tan X; Jiang M; Fan B; Tang K; Zhuang S Appl Opt; 2010 Mar; 49(9):1662-5. PubMed ID: 20300164 [TBL] [Abstract][Full Text] [Related]
28. Increasing surface band gap of Cu(In,Ga)Se2 thin films by post depositing an In-Ga-Se thin layer. Tan XH; Ye SL; Liu X Opt Express; 2011 Mar; 19(7):6609-15. PubMed ID: 21451688 [TBL] [Abstract][Full Text] [Related]
29. Optical and Structural Properties of High-Efficiency Epitaxial Cu(In,Ga)Se Guthrey H; Norman A; Nishinaga J; Niki S; Al-Jassim M; Shibata H ACS Appl Mater Interfaces; 2020 Jan; 12(2):3150-3160. PubMed ID: 31820906 [TBL] [Abstract][Full Text] [Related]
30. Crystalline Engineering Toward Large-Scale High-Efficiency Printable Cu(In,Ga)Se Chen SC; She NZ; Wu KH; Chen YZ; Lin WS; Li JX; Lai FI; Juang JY; Luo CW; Cheng LT; Hsieh TP; Kuo HC; Chueh YL ACS Appl Mater Interfaces; 2017 Apr; 9(16):14006-14012. PubMed ID: 28281352 [TBL] [Abstract][Full Text] [Related]
31. Facile Growth of Cu2ZnSnS4 Thin-Film by One-Step Pulsed Hybrid Electrophoretic and Electroplating Deposition. Tsai HW; Chen CW; Thomas SR; Hsu CH; Tsai WC; Chen YZ; Wang YC; Wang ZM; Hong HF; Chueh YL Sci Rep; 2016 Feb; 6():19102. PubMed ID: 26902556 [TBL] [Abstract][Full Text] [Related]
32. A facile chemical-mechanical polishing lift-off transfer process toward large scale Cu(In,Ga)Se2 thin-film solar cells on arbitrary substrates. Tseng KC; Yen YT; Thomas SR; Tsai HW; Hsu CH; Tsai WC; Shen CH; Shieh JM; Wang ZM; Chueh YL Nanoscale; 2016 Mar; 8(9):5181-8. PubMed ID: 26878109 [TBL] [Abstract][Full Text] [Related]
33. Improved Metal Oxide Electrode for CIGS Solar Cells: The Application of an AgO Neugebohrn N; Osterthun N; Götz-Köhler M; Gehrke K; Agert C Nanoscale Res Lett; 2021 Mar; 16(1):50. PubMed ID: 33744997 [TBL] [Abstract][Full Text] [Related]
34. Comparison of Ag(In,Ga)Se Zhang X; Kobayashi M; Yamada A ACS Appl Mater Interfaces; 2017 May; 9(19):16215-16220. PubMed ID: 28448114 [TBL] [Abstract][Full Text] [Related]
35. Role of anions in aqueous sol-gel process enabling flexible Cu(In,Ga)S2 thin-film solar cells. Oh Y; Woo K; Lee D; Lee H; Kim K; Kim I; Zhong Z; Jeong S; Moon J ACS Appl Mater Interfaces; 2014 Oct; 6(20):17740-7. PubMed ID: 25265601 [TBL] [Abstract][Full Text] [Related]
36. Micelle Structure in a Deep Eutectic Solvent for the Electrochemical Preparation of Nanomaterials. Hsieh YT; Liu YR Langmuir; 2018 Sep; 34(35):10270-10275. PubMed ID: 30085677 [TBL] [Abstract][Full Text] [Related]
37. Photovoltaic Performance and Interface Behaviors of Cu(In,Ga)Se2 Solar Cells with a Sputtered-Zn(O,S) Buffer Layer by High-Temperature Annealing. Wi JH; Kim TG; Kim JW; Lee WJ; Cho DH; Han WS; Chung YD ACS Appl Mater Interfaces; 2015 Aug; 7(31):17425-32. PubMed ID: 26192202 [TBL] [Abstract][Full Text] [Related]
38. Fingerprints Indicating Superior Properties of Internal Interfaces in Cu(In,Ga)Se Raghuwanshi M; Chugh M; Sozzi G; Kanevce A; Kühne TD; Mirhosseini H; Wuerz R; Cojocaru-Mirédin O Adv Mater; 2022 Sep; 34(37):e2203954. PubMed ID: 35900293 [TBL] [Abstract][Full Text] [Related]
39. Scope of detection and determination of gallium(III) in industrial ground water by square wave anodic stripping voltammetry on bismuth film electrode. Kamat JV; Guin SK; Pillai JS; Aggarwal SK Talanta; 2011 Oct; 86():256-65. PubMed ID: 22063539 [TBL] [Abstract][Full Text] [Related]
40. Control over MoSe Mandati S; Misra P; Boosagulla D; Tata NR; Bulusu SV Environ Sci Pollut Res Int; 2021 Mar; 28(12):15123-15129. PubMed ID: 33230789 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]