These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 24382417)

  • 1. Better understanding of mechanochemical reactions: Raman monitoring reveals surprisingly simple 'pseudo-fluid' model for a ball milling reaction.
    Ma X; Yuan W; Bell SE; James SL
    Chem Commun (Camb); 2014 Feb; 50(13):1585-7. PubMed ID: 24382417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward Mechanistic Understanding of Mechanochemical Reactions Using Real-Time
    Lukin S; Germann LS; Friščić T; Halasz I
    Acc Chem Res; 2022 May; 55(9):1262-1277. PubMed ID: 35446551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanochemical reaction kinetics scales linearly with impact energy.
    Vugrin L; Carta M; Lukin S; Meštrović E; Delogu F; Halasz I
    Faraday Discuss; 2023 Jan; 241(0):217-229. PubMed ID: 36149388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman spectroscopy for real-time and in situ monitoring of mechanochemical milling reactions.
    Lukin S; Užarević K; Halasz I
    Nat Protoc; 2021 Jul; 16(7):3492-3521. PubMed ID: 34089023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of milling frequency on a mechanochemical organic reaction monitored by in situ Raman spectroscopy.
    Julien PA; Malvestiti I; Friščić T
    Beilstein J Org Chem; 2017; 13():2160-2168. PubMed ID: 29114323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tandem In Situ Monitoring for Quantitative Assessment of Mechanochemical Reactions Involving Structurally Unknown Phases.
    Lukin S; Stolar T; Tireli M; Blanco MV; Babić D; Friščić T; Užarević K; Halasz I
    Chemistry; 2017 Oct; 23(56):13941-13949. PubMed ID: 28639258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Raman spectroscopy as a tool to study the kinetics and formation mechanism of carbonates.
    Bonales LJ; Muñoz-Iglesias V; Santamaría-Pérez D; Caceres M; Fernandez-Remolar D; Prieto-Ballesteros O
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Dec; 116():26-30. PubMed ID: 23896294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring the formation and decay of transient photosensitized intermediates using pump-probe UV resonance Raman spectroscopy. II: Kinetic modeling and multidimensional least-squares analysis.
    Kleimeyer JA; Harris JM
    Appl Spectrosc; 2003 Apr; 57(4):448-53. PubMed ID: 14658642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laboratory real-time and in situ monitoring of mechanochemical milling reactions by Raman spectroscopy.
    Gracin D; Štrukil V; Friščić T; Halasz I; Užarević K
    Angew Chem Int Ed Engl; 2014 Jun; 53(24):6193-7. PubMed ID: 24764165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray powder diffractometry in combination with principal component analysis--a tool for monitoring solid state changes.
    Kogermann K; Veski P; Rantanen J; Naelapää K
    Eur J Pharm Sci; 2011 Jul; 43(4):278-89. PubMed ID: 21575718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative solid-state analysis of three solid forms of ranitidine hydrochloride in ternary mixtures using Raman spectroscopy and X-ray powder diffraction.
    Chieng N; Rehder S; Saville D; Rades T; Aaltonen J
    J Pharm Biomed Anal; 2009 Jan; 49(1):18-25. PubMed ID: 19081220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy transfer and kinetics in mechanochemistry.
    Chen Z; Lu S; Mao Q; Buekens A; Wang Y; Yan J
    Environ Sci Pollut Res Int; 2017 Nov; 24(31):24562-24571. PubMed ID: 28905184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time and In Situ Monitoring of Mechanochemical Reactions: A New Playground for All Chemists.
    Užarević K; Halasz I; Friščić T
    J Phys Chem Lett; 2015 Oct; 6(20):4129-40. PubMed ID: 26722788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman spectroscopy as a process analytical technology (PAT) tool for the in-line monitoring and understanding of a powder blending process.
    De Beer TR; Bodson C; Dejaegher B; Walczak B; Vercruysse P; Burggraeve A; Lemos A; Delattre L; Heyden YV; Remon JP; Vervaet C; Baeyens WR
    J Pharm Biomed Anal; 2008 Nov; 48(3):772-9. PubMed ID: 18799281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring of chemical reactions within microreactors using an inverted Raman microscopic spectrometer.
    Fletcher PD; Haswell SJ; Zhang X
    Electrophoresis; 2003 Sep; 24(18):3239-45. PubMed ID: 14518051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defect engineered oxides for enhanced mechanochemical destruction of halogenated organic pollutants.
    Cagnetta G; Huang J; Lu M; Wang B; Wang Y; Deng S; Yu G
    Chemosphere; 2017 Oct; 184():879-883. PubMed ID: 28651313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enthalpy
    Užarević K; Ferdelji N; Mrla T; Julien PA; Halasz B; Friščić T; Halasz I
    Chem Sci; 2018 Mar; 9(9):2525-2532. PubMed ID: 29732130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Raman reaction monitoring using the solvent as internal standard.
    Aarnoutse PJ; Westerhuis JA
    Anal Chem; 2005 Mar; 77(5):1228-36. PubMed ID: 15732901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman frequency shifts of an internal mode near the tricritical and second order phase transitions in NH4Cl.
    Yurtseven H; Tümkaya MH
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Dec; 62(4-5):926-30. PubMed ID: 16099199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring the formation and decay of transient photosensitized intermediates using pump-probe UV resonance Raman spectroscopy. I: Self-modeling curve resolution.
    Kleimeyer JA; Harris JM
    Appl Spectrosc; 2003 Apr; 57(4):439-47. PubMed ID: 14658641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.