BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24382675)

  • 1. Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli.
    Jarmander J; Hallström BM; Larsson G
    Biotechnol Bioeng; 2014 Jun; 111(6):1108-15. PubMed ID: 24382675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cultivation strategies for production of (R)-3-hydroxybutyric acid from simultaneous consumption of glucose, xylose and arabinose by Escherichia coli.
    Jarmander J; Belotserkovsky J; Sjöberg G; Guevara-Martínez M; Pérez-Zabaleta M; Quillaguamán J; Larsson G
    Microb Cell Fact; 2015 Apr; 14():51. PubMed ID: 25889969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous glucose and xylose utilization by an
    Kaplan NA; Islam KN; Kanis FC; Verderber JR; Wang X; Jones JA; Koffas MAG
    Appl Environ Microbiol; 2024 Feb; 90(2):e0216923. PubMed ID: 38289128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of arabinose and xylose metabolism in Escherichia coli.
    Desai TA; Rao CV
    Appl Environ Microbiol; 2010 Mar; 76(5):1524-32. PubMed ID: 20023096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous carbon catabolite repression governs sugar and aromatic co-utilization in
    Shrestha S; Awasthi D; Chen Y; Gin J; Petzold CJ; Adams PD; Simmons BA; Singer SW
    Appl Environ Microbiol; 2023 Oct; 89(10):e0085223. PubMed ID: 37724856
    [No Abstract]   [Full Text] [Related]  

  • 6. Deletion of pgi gene in E. coli increases tolerance to furfural and 5-hydroxymethyl furfural in media containing glucose-xylose mixture.
    Jilani SB; Dev C; Eqbal D; Jawed K; Prasad R; Yazdani SS
    Microb Cell Fact; 2020 Jul; 19(1):153. PubMed ID: 32723338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel experimental evolution reveals a novel repressive control of GalP on xylose fermentation in Escherichia coli.
    Kurgan G; Sievert C; Flores A; Schneider A; Billings T; Panyon L; Morris C; Taylor E; Kurgan L; Cartwright R; Wang X
    Biotechnol Bioeng; 2019 Aug; 116(8):2074-2086. PubMed ID: 31038200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deletion of yghZ in Escherichia coli promotes growth in presence of furfural with xylose as carbon source.
    Jilani SB
    FEMS Microbiol Lett; 2024 Jan; 371():. PubMed ID: 38664064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic co-utilization of biomass-derived sugars enhances aromatic amino acid production by engineered Escherichia coli.
    Liu A; Machas M; Mhatre A; Hajinajaf N; Sarnaik A; Nichols N; Frazer S; Wang X; Varman AM; Nielsen DR
    Biotechnol Bioeng; 2024 Feb; 121(2):784-794. PubMed ID: 37926950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving product yields on D-glucose in Escherichia coli via knockout of pgi and zwf and feeding of supplemental carbon sources.
    Shiue E; Brockman IM; Prather KL
    Biotechnol Bioeng; 2015 Mar; 112(3):579-87. PubMed ID: 25258165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. D-Fucose as a gratuitous inducer of the L-arabinose operon in strains of Escherichia coli B-r mutant in gene araC.
    Beverin S; Sheppard DE; Park SS
    J Bacteriol; 1971 Jul; 107(1):79-86. PubMed ID: 4935332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catabolite repression of induction of aldose reductase activity and utilization of mixed hemicellulosic sugars in Candida guilliermondii.
    Sugai JK; Delgenes JP
    Curr Microbiol; 1995 Oct; 31(4):239-44. PubMed ID: 7549770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validating a Xylose Regulator to Increase Polyhydroxybutyrate Production for Utilizing Mixed Sugars from Lignocellulosic Biomass Using
    Oh SJ; Lee HJ; Hwang JH; Kim HJ; Shin N; Lee SH; Seo SO; Bhatia SK; Yang YH
    J Microbiol Biotechnol; 2024 Mar; 34(3):700-709. PubMed ID: 37919866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sugar metabolism in transketolase mutants of Escherichia coli.
    Josephson BL; Fraenkel DG
    J Bacteriol; 1974 Jun; 118(3):1082-9. PubMed ID: 4597996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New xylose transporters support the simultaneous consumption of glucose and xylose in
    Zhu X; Fan F; Qiu H; Shao M; Li D; Yu Y; Bi C; Zhang X
    mLife; 2022 Jun; 1(2):156-170. PubMed ID: 38817680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A second transport system for L-arabinose in Escherichia coli B-r controlled by the araC gene.
    Brown CE; Hogg RW
    J Bacteriol; 1972 Aug; 111(2):606-13. PubMed ID: 4626505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Priority of pentose utilization at the level of transcription: arabinose, xylose, and ribose operons.
    Kang HY; Song S; Park C
    Mol Cells; 1998 Jun; 8(3):318-23. PubMed ID: 9666469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum.
    Kawaguchi H; Sasaki M; Vertès AA; Inui M; Yukawa H
    Appl Environ Microbiol; 2009 Jun; 75(11):3419-29. PubMed ID: 19346355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabinose transport in araC- strains of Escherichia B-r.
    Singer J; Englesberg E
    Biochim Biophys Acta; 1971 Dec; 249(2):498-505. PubMed ID: 4332413
    [No Abstract]   [Full Text] [Related]  

  • 20. Correlation between depression of catabolite control of xylose metabolism and a defect in the phosphoenolpyruvate:mannose phosphotransferase system in Pediococcus halophilus.
    Abe K; Uchida K
    J Bacteriol; 1989 Apr; 171(4):1793-800. PubMed ID: 2703460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.