BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 24382870)

  • 1. Unexpected benefits of intermittent hypoxia: enhanced respiratory and nonrespiratory motor function.
    Dale EA; Ben Mabrouk F; Mitchell GS
    Physiology (Bethesda); 2014 Jan; 29(1):39-48. PubMed ID: 24382870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermittent Hypoxia-Induced Spinal Inflammation Impairs Respiratory Motor Plasticity by a Spinal p38 MAP Kinase-Dependent Mechanism.
    Huxtable AG; Smith SM; Peterson TJ; Watters JJ; Mitchell GS
    J Neurosci; 2015 Apr; 35(17):6871-80. PubMed ID: 25926462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repetitive intermittent hypoxia induces respiratory and somatic motor recovery after chronic cervical spinal injury.
    Lovett-Barr MR; Satriotomo I; Muir GD; Wilkerson JE; Hoffman MS; Vinit S; Mitchell GS
    J Neurosci; 2012 Mar; 32(11):3591-600. PubMed ID: 22423083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclooxygenase enzyme activity does not impair respiratory motor plasticity after one night of intermittent hypoxia.
    Huxtable AG; Kopp E; Dougherty BJ; Watters JJ; Mitchell GS
    Respir Physiol Neurobiol; 2018 Oct; 256():21-28. PubMed ID: 29233741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respiratory neuroplasticity: Mechanisms and translational implications of phrenic motor plasticity.
    Mitchell GS; Baker TL
    Handb Clin Neurol; 2022; 188():409-432. PubMed ID: 35965036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermittent hypoxia initiated plasticity in humans: A multipronged therapeutic approach to treat sleep apnea and overlapping co-morbidities.
    Mateika JH; Komnenov D
    Exp Neurol; 2017 Jan; 287(Pt 2):113-129. PubMed ID: 27170208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competing mechanisms of plasticity impair compensatory responses to repetitive apnoea.
    Fields DP; Braegelmann KM; Meza AL; Mickelson CR; Gumnit MG; Baker TL
    J Physiol; 2019 Aug; 597(15):3951-3967. PubMed ID: 31280489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute intermittent hypoxia increases both phrenic and sympathetic nerve activities in the rat.
    Dick TE; Hsieh YH; Wang N; Prabhakar N
    Exp Physiol; 2007 Jan; 92(1):87-97. PubMed ID: 17138622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal metaplasticity in respiratory motor control.
    Fields DP; Mitchell GS
    Front Neural Circuits; 2015; 9():2. PubMed ID: 25717292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermittent hypoxia and respiratory plasticity in humans and other animals: does exposure to intermittent hypoxia promote or mitigate sleep apnoea?
    Mateika JH; Narwani G
    Exp Physiol; 2009 Mar; 94(3):279-96. PubMed ID: 19060117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Invited review: Intermittent hypoxia and respiratory plasticity.
    Mitchell GS; Baker TL; Nanda SA; Fuller DD; Zabka AG; Hodgeman BA; Bavis RW; Mack KJ; Olson EB
    J Appl Physiol (1985); 2001 Jun; 90(6):2466-75. PubMed ID: 11356815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermittent hypoxia and respiratory recovery in pre-clinical rodent models of incomplete cervical spinal cord injury.
    Gonzalez-Rothi EJ; Lee KZ
    Exp Neurol; 2021 Aug; 342():113751. PubMed ID: 33974878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen species and respiratory plasticity following intermittent hypoxia.
    MacFarlane PM; Wilkerson JE; Lovett-Barr MR; Mitchell GS
    Respir Physiol Neurobiol; 2008 Dec; 164(1-2):263-71. PubMed ID: 18692605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermittent Hypoxia Induces Greater Functional Breathing Motor Recovery as a Fixed Rather Than Varied Duration Treatment after Cervical Spinal Cord Injury in Rats.
    Silverstein AL; Alilain WJ
    Neurotrauma Rep; 2021; 2(1):343-353. PubMed ID: 34318302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute intermittent hypoxia and rehabilitative training following cervical spinal injury alters neuronal hypoxia- and plasticity-associated protein expression.
    Hassan A; Arnold BM; Caine S; Toosi BM; Verge VMK; Muir GD
    PLoS One; 2018; 13(5):e0197486. PubMed ID: 29775479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic intermittent hypoxia increases apnoea index in sleeping rats.
    Edge D; Bradford A; O'Halloran KD
    Adv Exp Med Biol; 2012; 758():359-63. PubMed ID: 23080183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute intermittent hypoxia induced neural plasticity in respiratory motor control.
    Xing T; Fong AY; Bautista TG; Pilowsky PM
    Clin Exp Pharmacol Physiol; 2013 Sep; 40(9):602-9. PubMed ID: 23781949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hippocampal impairments are associated with intermittent hypoxia of obstructive sleep apnea.
    Feng J; Wu Q; Zhang D; Chen BY
    Chin Med J (Engl); 2012 Feb; 125(4):696-701. PubMed ID: 22490498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systemic inflammation inhibits serotonin receptor 2-induced phrenic motor facilitation upstream from BDNF/TrkB signaling.
    Agosto-Marlin IM; Nichols NL; Mitchell GS
    J Neurophysiol; 2018 Jun; 119(6):2176-2185. PubMed ID: 29513151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic Intermittent Hypoxia Induces Chronic Low-Grade Neuroinflammation in the Dorsal Hippocampus of Mice.
    Sapin E; Peyron C; Roche F; Gay N; Carcenac C; Savasta M; Levy P; Dematteis M
    Sleep; 2015 Oct; 38(10):1537-46. PubMed ID: 26085297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.