These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 24382991)

  • 1. Longitudinal Intensity Normalization of Magnetic Resonance Images using Patches.
    Roy S; Carass A; Prince JL
    Proc SPIE Int Soc Opt Eng; 2013 Mar; 8669():. PubMed ID: 24382991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PATCH BASED INTENSITY NORMALIZATION OF BRAIN MR IMAGES.
    Roy S; Carass A; Prince JL
    Proc IEEE Int Symp Biomed Imaging; 2013 Dec; 2013():342-345. PubMed ID: 24443685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histogram-based normalization technique on human brain magnetic resonance images from different acquisitions.
    Sun X; Shi L; Luo Y; Yang W; Li H; Liang P; Li K; Mok VCT; Chu WCW; Wang D
    Biomed Eng Online; 2015 Jul; 14():73. PubMed ID: 26215471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intensity Inhomogeneity Correction of Magnetic Resonance Images using Patches.
    Roy S; Carass A; Bazin PL; Prince JL
    Proc SPIE Int Soc Opt Eng; 2011 Mar; 7962():79621F. PubMed ID: 25077011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subject Specific Sparse Dictionary Learning for Atlas based Brain MRI Segmentation.
    Roy S; Carass A; Prince JL; Pham DL
    Mach Learn Med Imaging; 2014; 8679():248-255. PubMed ID: 25383394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LONGITUDINAL INTENSITY NORMALIZATION IN THE PRESENCE OF MULTIPLE SCLEROSIS LESIONS.
    Roy S; Carass A; Shiee N; Pham DL; Calabresi P; Reich D; Prince JL
    Proc IEEE Int Symp Biomed Imaging; 2013; ():1384-1387. PubMed ID: 24816891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating intensity normalization on MRIs of human brain with multiple sclerosis.
    Shah M; Xiao Y; Subbanna N; Francis S; Arnold DL; Collins DL; Arbel T
    Med Image Anal; 2011 Apr; 15(2):267-82. PubMed ID: 21233004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulse Sequence based Multi-acquisition MR Intensity Normalization.
    Jog A; Roy S; Carass A; Prince JL
    Proc SPIE Int Soc Opt Eng; 2013 Mar; 8669():. PubMed ID: 24386545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Longitudinal Patch-Based Segmentation of Multiple Sclerosis White Matter Lesions.
    Roy S; Carass A; Prince JL; Pham DL
    Mach Learn Med Imaging; 2015 Oct; 9352():194-202. PubMed ID: 27570846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patch-based generative adversarial neural network models for head and neck MR-only planning.
    Klages P; Benslimane I; Riyahi S; Jiang J; Hunt M; Deasy JO; Veeraraghavan H; Tyagi N
    Med Phys; 2020 Feb; 47(2):626-642. PubMed ID: 31733164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI.
    Li C; Huang R; Ding Z; Gatenby JC; Metaxas DN; Gore JC
    IEEE Trans Image Process; 2011 Jul; 20(7):2007-16. PubMed ID: 21518662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition.
    Wu G; Kim M; Sanroma G; Wang Q; Munsell BC; Shen D;
    Neuroimage; 2015 Feb; 106():34-46. PubMed ID: 25463474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Twenty new digital brain phantoms for creation of validation image data bases.
    Aubert-Broche B; Griffin M; Pike GB; Evans AC; Collins DL
    IEEE Trans Med Imaging; 2006 Nov; 25(11):1410-6. PubMed ID: 17117770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Standardization of brain MR images across machines and protocols: bridging the gap for MRI-based radiomics.
    Carré A; Klausner G; Edjlali M; Lerousseau M; Briend-Diop J; Sun R; Ammari S; Reuzé S; Alvarez Andres E; Estienne T; Niyoteka S; Battistella E; Vakalopoulou M; Dhermain F; Paragios N; Deutsch E; Oppenheim C; Pallud J; Robert C
    Sci Rep; 2020 Jul; 10(1):12340. PubMed ID: 32704007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removing inter-subject technical variability in magnetic resonance imaging studies.
    Fortin JP; Sweeney EM; Muschelli J; Crainiceanu CM; Shinohara RT;
    Neuroimage; 2016 May; 132():198-212. PubMed ID: 26923370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
    Deng M; Yu R; Wang L; Shi F; Yap PT; Shen D;
    Med Phys; 2016 Dec; 43(12):6588-6597. PubMed ID: 28054724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial volume segmentation of brain magnetic resonance images based on maximum a posteriori probability.
    Li X; Li L; Lu H; Liang Z
    Med Phys; 2005 Jul; 32(7Part1):2337-2345. PubMed ID: 28493585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A segmentation of brain MRI images utilizing intensity and contextual information by Markov random field.
    Chen M; Yan Q; Qin M
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):200-211. PubMed ID: 29072503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for assessing voxel correspondence in longitudinal tumor imaging.
    Hoisak JD; Jaffray DA
    Med Phys; 2011 May; 38(5):2742-53. PubMed ID: 21776811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated separation of diffusely abnormal white matter from focal white matter lesions on MRI in multiple sclerosis.
    Maranzano J; Dadar M; Zhernovaia M; Arnold DL; Collins DL; Narayanan S
    Neuroimage; 2020 Jun; 213():116690. PubMed ID: 32119987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.