BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 24383081)

  • 1. The BAG2 protein stabilises PINK1 by decreasing its ubiquitination.
    Che X; Tang B; Wang X; Chen D; Yan X; Jiang H; Shen L; Xu Q; Wang G; Guo J
    Biochem Biophys Res Commun; 2013 Nov; 441(2):488-92. PubMed ID: 24383081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BAG2 Gene-mediated Regulation of PINK1 Protein Is Critical for Mitochondrial Translocation of PARKIN and Neuronal Survival.
    Qu D; Hage A; Don-Carolis K; Huang E; Joselin A; Safarpour F; Marcogliese PC; Rousseaux MW; Hewitt SJ; Huang T; Im DS; Callaghan S; Dewar-Darch D; Figeys D; Slack RS; Park DS
    J Biol Chem; 2015 Dec; 290(51):30441-52. PubMed ID: 26538564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fbxo7 and Pink1 play a reciprocal role in regulating their protein levels.
    Huang T; Fang L; He R; Weng H; Chen X; Ye Q; Qu D
    Aging (Albany NY); 2020 Dec; 13(1):77-88. PubMed ID: 33291077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The BAG2 and BAG5 proteins inhibit the ubiquitination of pathogenic ataxin3-80Q.
    Che XQ; Tang BS; Wang HF; Yan XX; Jiang H; Shen L; Xu Q; Wang GH; Zhang HN; Wang CY; Guo JF
    Int J Neurosci; 2015 May; 125(5):390-4. PubMed ID: 25006867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of BAG5 as a Potential Biomarker for Parkinson's Disease Patients With R492X
    Fu Y; Chen Y; Tian H; Liu H; Qi D; Wu E; Wang X
    Front Neurosci; 2022; 16():903958. PubMed ID: 35968372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parkin stabilizes PINK1 through direct interaction.
    Shiba K; Arai T; Sato S; Kubo S; Ohba Y; Mizuno Y; Hattori N
    Biochem Biophys Res Commun; 2009 Jun; 383(3):331-5. PubMed ID: 19358826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic treatment with the complex I inhibitor MPP
    Verma M; Zhu J; Wang KZQ; Chu CT
    J Biol Chem; 2020 Jun; 295(23):7865-7876. PubMed ID: 32332095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ubiquitin E3 ligase CHIP promotes proteasomal degradation of the serine/threonine protein kinase PINK1 during staurosporine-induced cell death.
    Yoo L; Chung KC
    J Biol Chem; 2018 Jan; 293(4):1286-1297. PubMed ID: 29242192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteasome inhibition promotes mono-ubiquitination and nuclear translocation of mature (52 kDa) PINK1.
    Sun L; Büeler H
    Biochem Biophys Res Commun; 2019 Sep; 517(2):376-382. PubMed ID: 31362890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular interaction between parkin and PINK1 in mammalian neuronal cells.
    Um JW; Stichel-Gunkel C; Lübbert H; Lee G; Chung KC
    Mol Cell Neurosci; 2009 Apr; 40(4):421-32. PubMed ID: 19167501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bcl-2-associated athanogene 2 prevents the neurotoxicity of MPP+ via interaction with DJ-1.
    Song Z; Xu S; Song B; Zhang Q
    J Mol Neurosci; 2015 Mar; 55(3):798-802. PubMed ID: 25600833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hsp70 participates in PINK1-mediated mitophagy by regulating the stability of PINK1.
    Zheng Q; Huang C; Guo J; Tan J; Wang C; Tang B; Zhang H
    Neurosci Lett; 2018 Jan; 662():264-270. PubMed ID: 29107085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BAG5 protects against mitochondrial oxidative damage through regulating PINK1 degradation.
    Wang X; Guo J; Fei E; Mu Y; He S; Che X; Tan J; Xia K; Zhang Z; Wang G; Tang B
    PLoS One; 2014; 9(1):e86276. PubMed ID: 24475098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pink1 Parkinson mutations, the Cdc37/Hsp90 chaperones and Parkin all influence the maturation or subcellular distribution of Pink1.
    Weihofen A; Ostaszewski B; Minami Y; Selkoe DJ
    Hum Mol Genet; 2008 Feb; 17(4):602-16. PubMed ID: 18003639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic mutations and functions of PINK1.
    Kawajiri S; Saiki S; Sato S; Hattori N
    Trends Pharmacol Sci; 2011 Oct; 32(10):573-80. PubMed ID: 21784538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. miR-27a and miR-27b regulate autophagic clearance of damaged mitochondria by targeting PTEN-induced putative kinase 1 (PINK1).
    Kim J; Fiesel FC; Belmonte KC; Hudec R; Wang WX; Kim C; Nelson PT; Springer W; Kim J
    Mol Neurodegener; 2016 Jul; 11(1):55. PubMed ID: 27456084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PINK1 phosphorylates transglutaminase 2 and blocks its proteasomal degradation.
    Min B; Kwon YC; Choe KM; Chung KC
    J Neurosci Res; 2015 May; 93(5):722-35. PubMed ID: 25557247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BAG2 Interferes with CHIP-Mediated Ubiquitination of HSP72.
    Schönbühler B; Schmitt V; Huesmann H; Kern A; Gamerdinger M; Behl C
    Int J Mol Sci; 2016 Dec; 18(1):. PubMed ID: 28042827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L347P PINK1 mutant that fails to bind to Hsp90/Cdc37 chaperones is rapidly degraded in a proteasome-dependent manner.
    Moriwaki Y; Kim YJ; Ido Y; Misawa H; Kawashima K; Endo S; Takahashi R
    Neurosci Res; 2008 May; 61(1):43-8. PubMed ID: 18359116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of endogenous mutant and wild-type PINK1 on Parkin in fibroblasts from Parkinson disease patients.
    Rakovic A; Grünewald A; Seibler P; Ramirez A; Kock N; Orolicki S; Lohmann K; Klein C
    Hum Mol Genet; 2010 Aug; 19(16):3124-37. PubMed ID: 20508036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.