These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24383103)

  • 1. Inflorescences: concepts, function, development and evolution.
    Kirchoff BK; Claßen-Bockhoff R
    Ann Bot; 2013 Nov; 112(8):1471-6. PubMed ID: 24383103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interplay between inflorescence development and function as the crucible of architectural diversity.
    Harder LD; Prusinkiewicz P
    Ann Bot; 2013 Nov; 112(8):1477-93. PubMed ID: 23243190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of growth habit, inflorescence architecture, flower size, and fruit type in Rubiaceae: its ecological and evolutionary implications.
    Razafimandimbison SG; Ekman S; McDowell TD; Bremer B
    PLoS One; 2012; 7(7):e40851. PubMed ID: 22815842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards an ontogenetic understanding of inflorescence diversity.
    Claßen-Bockhoff R; Bull-Hereñu K
    Ann Bot; 2013 Nov; 112(8):1523-42. PubMed ID: 23445936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations of CorTFL1 and CorAP1 expression correlate with major evolutionary shifts of inflorescence architecture in Cornus (Cornaceae) - a proposed model for variation of closed inflorescence forms.
    Ma Q; Liu X; Franks RG; Xiang QJ
    New Phytol; 2017 Oct; 216(2):519-535. PubMed ID: 27662246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macroevolution of panicoid inflorescences: a history of contingency and order of trait acquisition.
    Reinheimer R; Vegetti AC; Rua GH
    Ann Bot; 2013 Nov; 112(8):1613-28. PubMed ID: 23478945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogeny-based developmental analyses illuminate evolution of inflorescence architectures in dogwoods (Cornus s. l., Cornaceae).
    Feng CM; Xiang QJ; Franks RG
    New Phytol; 2011 Aug; 191(3):850-869. PubMed ID: 21488878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the sequence and expression pattern of LFY homologues from dogwood species (Cornus) with divergent inflorescence architectures.
    Liu J; Franks RG; Feng CM; Liu X; Fu CX; Jenny Xiang QY
    Ann Bot; 2013 Nov; 112(8):1629-41. PubMed ID: 24052556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of inflorescence size on sexual expression and female reproductive success in a monoecious species.
    Torices R; Méndez M
    Plant Biol (Stuttg); 2011 Jan; 13 Suppl 1():78-85. PubMed ID: 21134090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flower orientation influences the consistency of bumblebee movement within inflorescences.
    Jordan CY; Natta M; Harder LD
    Ann Bot; 2016 Sep; 118(3):523-7. PubMed ID: 27425843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of mammalian herbivory on inflorescence architecture in ornithophilous Babiana (Iridaceae): implications for the evolution of a bird perch.
    de Waal C; Barrett SC; Anderson B
    Am J Bot; 2012 Jun; 99(6):1096-103. PubMed ID: 22615309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ray flower initiation in the Helianthus radula inflorescence is influenced by a functional allele of the HrCYC2c gene.
    Fambrini M; Bernardi R; Pugliesi C
    Genesis; 2020 Dec; 58(12):e23401. PubMed ID: 33283401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is LEAFY a useful marker gene for the flower-inflorescence boundary in the Euphorbia cyathium?
    Prenner G; Cacho NI; Baum D; Rudall PJ
    J Exp Bot; 2011 Jan; 62(1):345-50. PubMed ID: 20965944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary trade-offs in the chemical defense of floral and fruit tissues across genus Cornus.
    De La Pascua DR; Smith-Winterscheidt C; Dowell JA; Goolsby EW; Mason CM
    Am J Bot; 2020 Sep; 107(9):1260-1273. PubMed ID: 32984956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of floral identity genes in Clianthus maximus during mass inflorescence abortion and floral development.
    Song J; Clemens J; Jameson PE
    Ann Bot; 2011 Jun; 107(9):1501-9. PubMed ID: 21385774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary origin of the Asteraceae capitulum: Insights from Calyceraceae.
    Pozner R; Zanotti C; Johnson LA
    Am J Bot; 2012 Jan; 99(1):1-13. PubMed ID: 22203655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The control of compound inflorescences: insights from grasses and legumes.
    Zhong J; Kong F
    Trends Plant Sci; 2022 Jun; 27(6):564-576. PubMed ID: 34973922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Open and closed inflorescences: more than simple opposites.
    Bull-Hereñu K; Classen-Bockhoff R
    J Exp Bot; 2011 Jan; 62(1):79-88. PubMed ID: 20798000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inflorescences of Cuscuta (Convolvulaceae): Diversity, evolution and relationships with breeding systems and fruit dehiscence modes.
    Glofcheskie M; Long T; Ho A; Costea M
    PLoS One; 2023; 18(5):e0286100. PubMed ID: 37205688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Papilionoid inflorescences revisited (Leguminosae-Papilionoideae).
    Prenner G
    Ann Bot; 2013 Nov; 112(8):1567-76. PubMed ID: 23235698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.