These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 24383507)
1. Fully automated waist-worn accelerometer algorithm for detecting children's sleep-period time separate from 24-h physical activity or sedentary behaviors. Tudor-Locke C; Barreira TV; Schuna JM; Mire EF; Katzmarzyk PT Appl Physiol Nutr Metab; 2014 Jan; 39(1):53-7. PubMed ID: 24383507 [TBL] [Abstract][Full Text] [Related]
2. Identifying children's nocturnal sleep using 24-h waist accelerometry. Barreira TV; Schuna JM; Mire EF; Katzmarzyk PT; Chaput JP; Leduc G; Tudor-Locke C Med Sci Sports Exerc; 2015 May; 47(5):937-43. PubMed ID: 25202840 [TBL] [Abstract][Full Text] [Related]
3. Separating bedtime rest from activity using waist or wrist-worn accelerometers in youth. Tracy DJ; Xu Z; Choi L; Acra S; Chen KY; Buchowski MS PLoS One; 2014; 9(4):e92512. PubMed ID: 24727999 [TBL] [Abstract][Full Text] [Related]
4. Can an automated sleep detection algorithm for waist-worn accelerometry replace sleep logs? Barreira TV; Redmond JG; Brutsaert TD; Schuna JM; Mire EF; Katzmarzyk PT; Tudor-Locke C Appl Physiol Nutr Metab; 2018 Oct; 43(10):1027-1032. PubMed ID: 29701486 [TBL] [Abstract][Full Text] [Related]
5. Identifying bedrest using 24-h waist or wrist accelerometry in adults. Tracy JD; Acra S; Chen KY; Buchowski MS PLoS One; 2018; 13(3):e0194461. PubMed ID: 29570740 [TBL] [Abstract][Full Text] [Related]
6. Improving wear time compliance with a 24-hour waist-worn accelerometer protocol in the International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE). Tudor-Locke C; Barreira TV; Schuna JM; Mire EF; Chaput JP; Fogelholm M; Hu G; Kuriyan R; Kurpad A; Lambert EV; Maher C; Maia J; Matsudo V; Olds T; Onywera V; Sarmiento OL; Standage M; Tremblay MS; Zhao P; Church TS; Katzmarzyk PT; Int J Behav Nutr Phys Act; 2015 Feb; 12():11. PubMed ID: 25881074 [TBL] [Abstract][Full Text] [Related]
7. Estimating sleep efficiency in 10- to- 13-year-olds using a waist-worn accelerometer. Borghese MM; Lin Y; Chaput JP; Janssen I Sleep Health; 2018 Feb; 4(1):110-115. PubMed ID: 29332671 [TBL] [Abstract][Full Text] [Related]
8. Parameterizing and validating existing algorithms for identifying out-of-bed time using hip-worn accelerometer data from older women. Bellettiere J; Zhang Y; Berardi V; Full KM; Kerr J; LaMonte MJ; Evenson KR; Hovell M; LaCroix AZ; Di C Physiol Meas; 2019 Jul; 40(7):075008. PubMed ID: 31018183 [TBL] [Abstract][Full Text] [Related]
9. Validity of a Non-Proprietary Algorithm for Identifying Lying Down Using Raw Data from Thigh-Worn Triaxial Accelerometers. Hettiarachchi P; Aili K; Holtermann A; Stamatakis E; Svartengren M; Palm P Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33572815 [TBL] [Abstract][Full Text] [Related]
10. Differentiating Sitting and Lying Using a Thigh-Worn Accelerometer. Lyden K; John D; Dall P; Granat MH Med Sci Sports Exerc; 2016 Apr; 48(4):742-7. PubMed ID: 26516691 [TBL] [Abstract][Full Text] [Related]
11. Validation of an automated sleep detection algorithm using data from multiple accelerometer brands. Plekhanova T; Rowlands AV; Davies MJ; Hall AP; Yates T; Edwardson CL J Sleep Res; 2023 Jun; 32(3):e13760. PubMed ID: 36317222 [TBL] [Abstract][Full Text] [Related]
12. Development and application of an automated algorithm to identify a window of consecutive days of accelerometer wear for large-scale studies. Rillamas-Sun E; Buchner DM; Di C; Evenson KR; LaCroix AZ BMC Res Notes; 2015 Jun; 8():270. PubMed ID: 26113170 [TBL] [Abstract][Full Text] [Related]
13. The backwards comparability of wrist worn GENEActiv and waist worn ActiGraph accelerometer estimates of sedentary time in children. Boddy LM; Noonan RJ; Rowlands AV; Hurter L; Knowles ZR; Fairclough SJ J Sci Med Sport; 2019 Jul; 22(7):814-820. PubMed ID: 30803818 [TBL] [Abstract][Full Text] [Related]
14. Identifying bedrest using waist-worn triaxial accelerometers in preschool children. Tracy JD; Donnelly T; Sommer EC; Heerman WJ; Barkin SL; Buchowski MS PLoS One; 2021; 16(1):e0246055. PubMed ID: 33507967 [TBL] [Abstract][Full Text] [Related]
15. Detecting Sleep and Nonwear in 24-h Wrist Accelerometer Data from the National Health and Nutrition Examination Survey. Thapa-Chhetry B; Arguello DJ; John D; Intille S Med Sci Sports Exerc; 2022 Nov; 54(11):1936-1946. PubMed ID: 36007161 [TBL] [Abstract][Full Text] [Related]
16. Validity of an algorithm for determining sleep/wake states using FS-760 in school-aged children. Enomoto M; Kitamura S; Nakazaki K J Physiol Anthropol; 2022 Aug; 41(1):29. PubMed ID: 35982481 [TBL] [Abstract][Full Text] [Related]
17. Associations between early-life screen viewing and 24 hour movement behaviours: findings from a longitudinal birth cohort study. Chen B; Bernard JY; Padmapriya N; Ning Y; Cai S; Lança C; Tan KH; Yap F; Chong YS; Shek L; Godfrey KM; Saw SM; Chan SY; Eriksson JG; Tan CS; Müller-Riemenschneider F Lancet Child Adolesc Health; 2020 Mar; 4(3):201-209. PubMed ID: 32004497 [TBL] [Abstract][Full Text] [Related]
18. Identifying waking time in 24-h accelerometry data in adults using an automated algorithm. van der Berg JD; Willems PJ; van der Velde JH; Savelberg HH; Schaper NC; Schram MT; Sep SJ; Dagnelie PC; Bosma H; Stehouwer CD; Koster A J Sports Sci; 2016 Oct; 34(19):1867-73. PubMed ID: 26837855 [TBL] [Abstract][Full Text] [Related]
19. Reliability of GENEActiv accelerometers to estimate sleep, physical activity, and sedentary time in children. Antczak D; Lonsdale C; Del Pozo Cruz B; Parker P; Sanders T Int J Behav Nutr Phys Act; 2021 Jun; 18(1):73. PubMed ID: 34090467 [TBL] [Abstract][Full Text] [Related]
20. When does sedentary behavior become sleep? A proposed framework for classifying activity during sleep-wake transitions. Barone Gibbs B; Kline CE Int J Behav Nutr Phys Act; 2018 Aug; 15(1):81. PubMed ID: 30134918 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]