BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

736 related articles for article (PubMed ID: 24383718)

  • 1. Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement.
    Altenhöfer S; Radermacher KA; Kleikers PW; Wingler K; Schmidt HH
    Antioxid Redox Signal; 2015 Aug; 23(5):406-27. PubMed ID: 24383718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NADPH oxidase inhibitors: a decade of discovery from Nox2ds to HTS.
    Cifuentes-Pagano E; Csanyi G; Pagano PJ
    Cell Mol Life Sci; 2012 Jul; 69(14):2315-25. PubMed ID: 22585059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isoform-selective NADPH oxidase inhibitor panel for pharmacological target validation.
    Dao VT; Elbatreek MH; Altenhöfer S; Casas AI; Pachado MP; Neullens CT; Knaus UG; Schmidt HHHW
    Free Radic Biol Med; 2020 Feb; 148():60-69. PubMed ID: 31883469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibiting the Activity of NADPH Oxidase in Cancer.
    Konaté MM; Antony S; Doroshow JH
    Antioxid Redox Signal; 2020 Aug; 33(6):435-454. PubMed ID: 32008376
    [No Abstract]   [Full Text] [Related]  

  • 5. The NOX toolbox: validating the role of NADPH oxidases in physiology and disease.
    Altenhöfer S; Kleikers PW; Radermacher KA; Scheurer P; Rob Hermans JJ; Schiffers P; Ho H; Wingler K; Schmidt HH
    Cell Mol Life Sci; 2012 Jul; 69(14):2327-43. PubMed ID: 22648375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacological characterization of the seven human NOX isoforms and their inhibitors.
    Augsburger F; Filippova A; Rasti D; Seredenina T; Lam M; Maghzal G; Mahiout Z; Jansen-Dürr P; Knaus UG; Doroshow J; Stocker R; Krause KH; Jaquet V
    Redox Biol; 2019 Sep; 26():101272. PubMed ID: 31330481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insights on NOX enzymes in the central nervous system.
    Nayernia Z; Jaquet V; Krause KH
    Antioxid Redox Signal; 2014 Jun; 20(17):2815-37. PubMed ID: 24206089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The NADPH Oxidase Family and Its Inhibitors.
    Chocry M; Leloup L
    Antioxid Redox Signal; 2020 Aug; 33(5):332-353. PubMed ID: 31826639
    [No Abstract]   [Full Text] [Related]  

  • 9. Current status of NADPH oxidase research in cardiovascular pharmacology.
    Rodiño-Janeiro BK; Paradela-Dobarro B; Castiñeiras-Landeira MI; Raposeiras-Roubín S; González-Juanatey JR; Alvarez E
    Vasc Health Risk Manag; 2013; 9():401-28. PubMed ID: 23983473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective inactivation of NADPH oxidase 2 causes regression of vascularization and the size and stability of atherosclerotic plaques.
    Quesada IM; Lucero A; Amaya C; Meijles DN; Cifuentes ME; Pagano PJ; Castro C
    Atherosclerosis; 2015 Oct; 242(2):469-75. PubMed ID: 26298737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of potent and selective iodonium-class inhibitors of NADPH oxidases.
    Lu J; Risbood P; Kane CT; Hossain MT; Anderson L; Hill K; Monks A; Wu Y; Antony S; Juhasz A; Liu H; Jiang G; Harris E; Roy K; Meitzler JL; Konaté M; Doroshow JH
    Biochem Pharmacol; 2017 Nov; 143():25-38. PubMed ID: 28709950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent.
    Aoyama T; Paik YH; Watanabe S; Laleu B; Gaggini F; Fioraso-Cartier L; Molango S; Heitz F; Merlot C; Szyndralewiez C; Page P; Brenner DA
    Hepatology; 2012 Dec; 56(6):2316-27. PubMed ID: 22806357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NADPH Oxidase Inhibition: Preclinical and Clinical Studies in Diabetic Complications.
    Urner S; Ho F; Jha JC; Ziegler D; Jandeleit-Dahm K
    Antioxid Redox Signal; 2020 Aug; 33(6):415-434. PubMed ID: 32008354
    [No Abstract]   [Full Text] [Related]  

  • 14. NADPH oxidases in heart failure: poachers or gamekeepers?
    Zhang M; Perino A; Ghigo A; Hirsch E; Shah AM
    Antioxid Redox Signal; 2013 Mar; 18(9):1024-41. PubMed ID: 22747566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The quest for selective nox inhibitors and therapeutics: challenges, triumphs and pitfalls.
    Cifuentes-Pagano E; Meijles DN; Pagano PJ
    Antioxid Redox Signal; 2014 Jun; 20(17):2741-54. PubMed ID: 24070014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA Targeting Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Cancer.
    Kushwaha PP; Gupta S; Singh AK; Prajapati KS; Shuaib M; Kumar S
    Antioxid Redox Signal; 2020 Feb; 32(5):267-284. PubMed ID: 31656079
    [No Abstract]   [Full Text] [Related]  

  • 17. Opportunity nox: the future of NADPH oxidases as therapeutic targets in cardiovascular disease.
    Streeter J; Thiel W; Brieger K; Miller FJ
    Cardiovasc Ther; 2013 Jun; 31(3):125-37. PubMed ID: 22280098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nicotinamide Adenosine Dinucleotide Phosphate Oxidase-Mediated Signaling in Cardiac Remodeling.
    Visnagri A; Oexner RR; Kmiotek-Wasylewska K; Zhang M; Zoccarato A; Shah AM
    Antioxid Redox Signal; 2023 Feb; 38(4-6):371-387. PubMed ID: 36656669
    [No Abstract]   [Full Text] [Related]  

  • 19. Nox NADPH oxidases and the endoplasmic reticulum.
    Laurindo FR; Araujo TL; Abrahão TB
    Antioxid Redox Signal; 2014 Jun; 20(17):2755-75. PubMed ID: 24386930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NOX Inhibitors: From Bench to Naxibs to Bedside.
    Elbatreek MH; Mucke H; Schmidt HHHW
    Handb Exp Pharmacol; 2021; 264():145-168. PubMed ID: 32780287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.