These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 24383818)
1. Landscape effects on gene flow for a climate-sensitive montane species, the American pika. Castillo JA; Epps CW; Davis AR; Cushman SA Mol Ecol; 2014 Feb; 23(4):843-56. PubMed ID: 24383818 [TBL] [Abstract][Full Text] [Related]
2. Replicated landscape genetic and network analyses reveal wide variation in functional connectivity for American pikas. Castillo JA; Epps CW; Jeffress MR; Ray C; Rodhouse TJ; Schwalm D Ecol Appl; 2016 Sep; 26(6):1660-1676. PubMed ID: 27755691 [TBL] [Abstract][Full Text] [Related]
3. Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach. Schwalm D; Epps CW; Rodhouse TJ; Monahan WB; Castillo JA; Ray C; Jeffress MR Glob Chang Biol; 2016 Apr; 22(4):1572-84. PubMed ID: 26667878 [TBL] [Abstract][Full Text] [Related]
4. Comparative landscape genetics of two river frog species occurring at different elevations on Mount Kilimanjaro. Zancolli G; Rödel MO; Steffan-Dewenter I; Storfer A Mol Ecol; 2014 Oct; 23(20):4989-5002. PubMed ID: 25230017 [TBL] [Abstract][Full Text] [Related]
5. Mechanistic variables can enhance predictive models of endotherm distributions: the American pika under current, past, and future climates. Mathewson PD; Moyer-Horner L; Beever EA; Briscoe NJ; Kearney M; Yahn JM; Porter WP Glob Chang Biol; 2017 Mar; 23(3):1048-1064. PubMed ID: 27500587 [TBL] [Abstract][Full Text] [Related]
6. Adaptive population divergence and directional gene flow across steep elevational gradients in a climate-sensitive mammal. Waterhouse MD; Erb LP; Beever EA; Russello MA Mol Ecol; 2018 Jun; 27(11):2512-2528. PubMed ID: 29693300 [TBL] [Abstract][Full Text] [Related]
7. When cold is better: climate-driven elevation shifts yield complex patterns of diversification and demography in an alpine specialist (American pika, Ochotona princeps). Galbreath KE; Hafner DJ; Zamudio KR Evolution; 2009 Nov; 63(11):2848-63. PubMed ID: 19663994 [TBL] [Abstract][Full Text] [Related]
8. The influence of landscape on gene flow in the eastern massasauga rattlesnake (Sistrurus c. catenatus): insight from computer simulations. Dileo MF; Rouse JD; Dávila JA; Lougheed SC Mol Ecol; 2013 Sep; 22(17):4483-98. PubMed ID: 23889682 [TBL] [Abstract][Full Text] [Related]
9. Rangewide landscape genetics of an endemic Pacific northwestern salamander. Trumbo DR; Spear SF; Baumsteiger J; Storfer A Mol Ecol; 2013 Mar; 22(5):1250-66. PubMed ID: 23293948 [TBL] [Abstract][Full Text] [Related]
10. Modelling functional landscape connectivity from genetic population structure: a new spatially explicit approach. Braunisch V; Segelbacher G; Hirzel AH Mol Ecol; 2010 Sep; 19(17):3664-78. PubMed ID: 20723058 [TBL] [Abstract][Full Text] [Related]
11. Tracking climate change in a dispersal-limited species: reduced spatial and genetic connectivity in a montane salamander. Velo-Antón G; Parra JL; Parra-Olea G; Zamudio KR Mol Ecol; 2013 Jun; 22(12):3261-78. PubMed ID: 23710831 [TBL] [Abstract][Full Text] [Related]
12. Spatially explicit models of dynamic histories: examination of the genetic consequences of Pleistocene glaciation and recent climate change on the American Pika. Brown JL; Knowles LL Mol Ecol; 2012 Aug; 21(15):3757-75. PubMed ID: 22702844 [TBL] [Abstract][Full Text] [Related]
13. The idiosyncrasies of place: geographic variation in the climate-distribution relationships of the American pika. Jeffress MR; Rodhouse TJ; Ray C; Wolff S; Epps CW Ecol Appl; 2013 Jun; 23(4):864-78. PubMed ID: 23865236 [TBL] [Abstract][Full Text] [Related]
14. Relating sub-surface ice features to physiological stress in a climate sensitive mammal, the American pika (Ochotona princeps). Wilkening JL; Ray C; Varner J PLoS One; 2015; 10(3):e0119327. PubMed ID: 25803587 [TBL] [Abstract][Full Text] [Related]
15. Quantifying the lag time to detect barriers in landscape genetics. Landguth EL; Cushman SA; Schwartz MK; McKelvey KS; Murphy M; Luikart G Mol Ecol; 2010 Oct; 19(19):4179-91. PubMed ID: 20819159 [TBL] [Abstract][Full Text] [Related]
16. Climate Tolerances and Habitat Requirements Jointly Shape the Elevational Distribution of the American Pika (Ochotona princeps), with Implications for Climate Change Effects. Yandow LH; Chalfoun AD; Doak DF PLoS One; 2015; 10(8):e0131082. PubMed ID: 26244851 [TBL] [Abstract][Full Text] [Related]
17. Current approaches using genetic distances produce poor estimates of landscape resistance to interindividual dispersal. Graves TA; Beier P; Royle JA Mol Ecol; 2013 Aug; 22(15):3888-903. PubMed ID: 23786212 [TBL] [Abstract][Full Text] [Related]
18. Colonization from divergent ancestors: glaciation signatures on contemporary patterns of genomic variation in Collared Pikas (Ochotona collaris). Lanier HC; Massatti R; He Q; Olson LE; Knowles LL Mol Ecol; 2015 Jul; 24(14):3688-705. PubMed ID: 26096099 [TBL] [Abstract][Full Text] [Related]
19. Predictors of Current and Longer-Term Patterns of Abundance of American Pikas (Ochotona princeps) across a Leading-Edge Protected Area. Moyer-Horner L; Beever EA; Johnson DH; Biel M; Belt J PLoS One; 2016; 11(11):e0167051. PubMed ID: 27902732 [TBL] [Abstract][Full Text] [Related]
20. Testing alternative models of climate-mediated extirpations. Beever EA; Ray C; Mote PW; Wilkening JL Ecol Appl; 2010 Jan; 20(1):164-78. PubMed ID: 20349838 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]