BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 24383866)

  • 1. Practical labeling methodology for choline-derived lipids and applications in live cell fluorescence imaging.
    Li C; Key JA; Jia F; Dandapat A; Hur S; Cairo CW
    Photochem Photobiol; 2014; 90(3):686-95. PubMed ID: 24383866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins.
    Gaebler A; Penno A; Kuerschner L; Thiele C
    J Lipid Res; 2016 Oct; 57(10):1934-1947. PubMed ID: 27565170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular consequences of copper complexes used to catalyze bioorthogonal click reactions.
    Kennedy DC; McKay CS; Legault MC; Danielson DC; Blake JA; Pegoraro AF; Stolow A; Mester Z; Pezacki JP
    J Am Chem Soc; 2011 Nov; 133(44):17993-8001. PubMed ID: 21970470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective fluorescence labeling of lipids in living cells.
    Neef AB; Schultz C
    Angew Chem Int Ed Engl; 2009; 48(8):1498-500. PubMed ID: 19145623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An azide-modified nucleoside for metabolic labeling of DNA.
    Neef AB; Luedtke NW
    Chembiochem; 2014 Apr; 15(6):789-93. PubMed ID: 24644275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global Mapping of Protein-Lipid Interactions by Using Modified Choline-Containing Phospholipids Metabolically Synthesized in Live Cells.
    Wang D; Du S; Cazenave-Gassiot A; Ge J; Lee JS; Wenk MR; Yao SQ
    Angew Chem Int Ed Engl; 2017 May; 56(21):5829-5833. PubMed ID: 28429463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-specific labeling of genetically encoded azido groups for multicolor, single-molecule fluorescence imaging of GPCRs.
    Tian H; Sakmar TP; Huber T
    Methods Cell Biol; 2013; 117():267-303. PubMed ID: 24143983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioorthogonal click chemistry for fluorescence imaging of choline phospholipids in plants.
    Paper JM; Mukherjee T; Schrick K
    Plant Methods; 2018; 14():31. PubMed ID: 29692861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic labeling and direct imaging of choline phospholipids in vivo.
    Jao CY; Roth M; Welti R; Salic A
    Proc Natl Acad Sci U S A; 2009 Sep; 106(36):15332-7. PubMed ID: 19706413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Azide vs Alkyne Functionalization in Pt(II) Complexes for Post-treatment Click Modification: Solid-State Structure, Fluorescent Labeling, and Cellular Fate.
    Wirth R; White JD; Moghaddam AD; Ginzburg AL; Zakharov LN; Haley MM; DeRose VJ
    J Am Chem Soc; 2015 Dec; 137(48):15169-75. PubMed ID: 26512733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting bioorthogonal chemistry to elucidate protein-lipid binding interactions and other biological roles of phospholipids.
    Best MD; Rowland MM; Bostic HE
    Acc Chem Res; 2011 Sep; 44(9):686-98. PubMed ID: 21548554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacing click chemistry with automated oligonucleotide synthesis for the preparation of fluorescent DNA probes containing internal xanthene and cyanine dyes.
    Astakhova IK; Wengel J
    Chemistry; 2013 Jan; 19(3):1112-22. PubMed ID: 23180379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling unidirectional threading of α-cyclodextrin in a [2]rotaxane through spin labeling approach.
    Casati C; Franchi P; Pievo R; Mezzina E; Lucarini M
    J Am Chem Soc; 2012 Nov; 134(46):19108-17. PubMed ID: 23106205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of cellular sialic acid content using nitrobenzoxadiazole carbonyl-reactive chromophores.
    Key JA; Li C; Cairo CW
    Bioconjug Chem; 2012 Mar; 23(3):363-71. PubMed ID: 22288945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clickable fluorescent dyes for multimodal bioorthogonal imaging.
    Tsou LK; Zhang MM; Hang HC
    Org Biomol Chem; 2009 Dec; 7(24):5055-8. PubMed ID: 20024096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Labeling lipids for imaging in live cells.
    Schultz C; Neef AB; Gadella TW; Goedhart J
    Cold Spring Harb Protoc; 2010 Jul; 2010(7):pdb.prot5459. PubMed ID: 20647363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conjugation of enzymes on RNA probes through Cu(I) catalyzed alkyne-azide cycloaddition.
    Kitaoka M; Tanaka Y; Tada Y; Goto M; Miyawaki K; Noji S; Kamiya N
    Biotechnol J; 2011 Apr; 6(4):470-6. PubMed ID: 21170979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reductive alkylation and sequential reductive alkylation-click chemistry for on-solid-support modification of pyrrolidinyl peptide nucleic acid.
    Ditmangklo B; Boonlua C; Suparpprom C; Vilaivan T
    Bioconjug Chem; 2013 Apr; 24(4):614-25. PubMed ID: 23517168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthetic labeling and two-color imaging of phospholipids in cells.
    Jao CY; Roth M; Welti R; Salic A
    Chembiochem; 2015 Feb; 16(3):472-6. PubMed ID: 25586136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring protein-polymer conjugation by a fluorogenic Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition.
    Dirks AT; Cornelissen JJ; Nolte RJ
    Bioconjug Chem; 2009 Jun; 20(6):1129-38. PubMed ID: 19453101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.