BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 24384122)

  • 1. Pore size effect of collagen scaffolds on cartilage regeneration.
    Zhang Q; Lu H; Kawazoe N; Chen G
    Acta Biomater; 2014 May; 10(5):2005-13. PubMed ID: 24384122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gelatin Scaffolds with Controlled Pore Structure and Mechanical Property for Cartilage Tissue Engineering.
    Chen S; Zhang Q; Nakamoto T; Kawazoe N; Chen G
    Tissue Eng Part C Methods; 2016 Mar; 22(3):189-98. PubMed ID: 26650856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering.
    Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z
    J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation.
    Jonnalagadda JB; Rivero IV; Dertien JS
    J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cartilage tissue engineering using funnel-like collagen sponges prepared with embossing ice particulate templates.
    Lu H; Ko YG; Kawazoe N; Chen G
    Biomaterials; 2010 Aug; 31(22):5825-35. PubMed ID: 20452015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional poly(1,8-octanediol-co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes.
    Jeong CG; Zhang H; Hollister SJ
    Acta Biomater; 2011 Feb; 7(2):505-14. PubMed ID: 20807597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biomimetic honeycomb-like scaffold prepared by flow-focusing technology for cartilage regeneration.
    Wang CC; Yang KC; Lin KH; Wu CC; Liu YL; Lin FH; Chen IH
    Biotechnol Bioeng; 2014 Nov; 111(11):2338-48. PubMed ID: 24895237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.
    Chen Y; Kawazoe N; Chen G
    Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of PLGA scaffold orientation on in vitro cartilage regeneration.
    Zhang Y; Yang F; Liu K; Shen H; Zhu Y; Zhang W; Liu W; Wang S; Cao Y; Zhou G
    Biomaterials; 2012 Apr; 33(10):2926-35. PubMed ID: 22257722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering.
    Eglin D; Grad S; Gogolewski S; Alini M
    J Biomed Mater Res A; 2010 Jan; 92(1):393-408. PubMed ID: 19191318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cartilaginous tissue formation using a mechano-active scaffold and dynamic compressive stimulation.
    Jung Y; Kim SH; Kim SH; Kim YH; Xie J; Matsuda T; Min BG
    J Biomater Sci Polym Ed; 2008; 19(1):61-74. PubMed ID: 18177554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Culture of bovine articular chondrocytes in funnel-like collagen-PLGA hybrid sponges.
    Lu H; Ko YG; Kawazoe N; Chen G
    Biomed Mater; 2011 Aug; 6(4):045011. PubMed ID: 21747151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape-memory porous alginate scaffolds for regeneration of the annulus fibrosus: effect of TGF-β3 supplementation and oxygen culture conditions.
    Guillaume O; Daly A; Lennon K; Gansau J; Buckley SF; Buckley CT
    Acta Biomater; 2014 May; 10(5):1985-95. PubMed ID: 24380722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auricular cartilage repair using cryogel scaffolds loaded with BMP-7-expressing primary chondrocytes.
    Odabas S; Feichtinger GA; Korkusuz P; Inci I; Bilgic E; Yar AS; Cavusoglu T; Menevse S; Vargel I; Piskin E
    J Tissue Eng Regen Med; 2013 Oct; 7(10):831-40. PubMed ID: 23281155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designed composites for mimicking compressive mechanical properties of articular cartilage matrix.
    Zhu Y; Wu H; Sun S; Zhou T; Wu J; Wan Y
    J Mech Behav Biomed Mater; 2014 Aug; 36():32-46. PubMed ID: 24793172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of scaffold mean pore size in meniscus regeneration.
    Zhang ZZ; Jiang D; Ding JX; Wang SJ; Zhang L; Zhang JY; Qi YS; Chen XS; Yu JK
    Acta Biomater; 2016 Oct; 43():314-326. PubMed ID: 27481291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model.
    Luo Z; Jiang L; Xu Y; Li H; Xu W; Wu S; Wang Y; Tang Z; Lv Y; Yang L
    Biomaterials; 2015 Jun; 52():463-75. PubMed ID: 25818452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of collagen-glycosaminoglycan scaffold pore size on matrix mineralization and cellular behavior in different cell types.
    Murphy CM; Duffy GP; Schindeler A; O'brien FJ
    J Biomed Mater Res A; 2016 Jan; 104(1):291-304. PubMed ID: 26386362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved cartilage regeneration utilizing mesenchymal stem cells in TGF-beta1 gene-activated scaffolds.
    Diao H; Wang J; Shen C; Xia S; Guo T; Dong L; Zhang C; Chen J; Zhao J; Zhang J
    Tissue Eng Part A; 2009 Sep; 15(9):2687-98. PubMed ID: 19216641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of pore sizes of PLGA scaffolds on mechanical properties and cell behaviour for nucleus pulposus regeneration in vivo.
    Kim HY; Kim HN; Lee SJ; Song JE; Kwon SY; Chung JW; Lee D; Khang G
    J Tissue Eng Regen Med; 2017 Jan; 11(1):44-57. PubMed ID: 24619952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.