BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24384234)

  • 1. A functional recT gene for recombineering of Clostridium.
    Dong H; Tao W; Gong F; Li Y; Zhang Y
    J Biotechnol; 2014 Mar; 173():65-7. PubMed ID: 24384234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single Crossover-Mediated Markerless Genome Engineering in Clostridium acetobutylicum.
    Lee SH; Kim HJ; Shin YA; Kim KH; Lee SJ
    J Microbiol Biotechnol; 2016 Apr; 26(4):725-9. PubMed ID: 26767573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo recombineering of bacteriophage lambda by PCR fragments and single-strand oligonucleotides.
    Oppenheim AB; Rattray AJ; Bubunenko M; Thomason LC; Court DL
    Virology; 2004 Feb; 319(2):185-9. PubMed ID: 14980479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosomal engineering of Clostridium perfringens using group II introns.
    Gupta P; Chen Y
    Methods Mol Biol; 2008; 435():217-28. PubMed ID: 18370079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Genetic modification systems for Clostridium acetobutylicum].
    Dong H; Zhang Y; Li Y
    Sheng Wu Gong Cheng Xue Bao; 2010 Oct; 26(10):1372-8. PubMed ID: 21218624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oligo-Mediated Recombineering and its Use for Making SNPs, Knockouts, Insertions, and Fusions in Mycobacterium tuberculosis.
    Murphy KC
    Methods Mol Biol; 2021; 2314():301-321. PubMed ID: 34235660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clostridial Genetics: Genetic Manipulation of the Pathogenic Clostridia.
    Kuehne SA; Rood JI; Lyras D
    Microbiol Spectr; 2019 May; 7(3):. PubMed ID: 31172914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifying bacteriophage lambda with recombineering.
    Thomason LC; Oppenheim AB; Court DL
    Methods Mol Biol; 2009; 501():239-51. PubMed ID: 19066825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome engineering using targeted oligonucleotide libraries and functional selection.
    Diner EJ; Garza-Sánchez F; Hayes CS
    Methods Mol Biol; 2011; 765():71-82. PubMed ID: 21815087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Recombineering and its application].
    Zhou JG; Hong X; Huang CF
    Yi Chuan Xue Bao; 2003 Oct; 30(10):983-8. PubMed ID: 14669518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mycobacterial recombineering.
    van Kessel JC; Hatfull GF
    Methods Mol Biol; 2008; 435():203-15. PubMed ID: 18370078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The CcpA protein is necessary for efficient sporulation and enterotoxin gene (cpe) regulation in Clostridium perfringens.
    Varga J; Stirewalt VL; Melville SB
    J Bacteriol; 2004 Aug; 186(16):5221-9. PubMed ID: 15292123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering clostridium strain to accept unmethylated DNA.
    Dong H; Zhang Y; Dai Z; Li Y
    PLoS One; 2010 Feb; 5(2):e9038. PubMed ID: 20161730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombineering-Mediated Genome Editing in Burkholderiales Strains.
    Wang X; Liu J; Zheng W; Zhang Y; Bian X
    Methods Mol Biol; 2022; 2479():21-36. PubMed ID: 35583730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering.
    Wang HH; Church GM
    Methods Enzymol; 2011; 498():409-26. PubMed ID: 21601688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recombineering: highly efficient in vivo genetic engineering using single-strand oligos.
    Sawitzke JA; Thomason LC; Bubunenko M; Li X; Costantino N; Court DL
    Methods Enzymol; 2013; 533():157-77. PubMed ID: 24182922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved bacterial recombineering by parallelized protein discovery.
    Wannier TM; Nyerges A; Kuchwara HM; Czikkely M; Balogh D; Filsinger GT; Borders NC; Gregg CJ; Lajoie MJ; Rios X; Pál C; Church GM
    Proc Natl Acad Sci U S A; 2020 Jun; 117(24):13689-13698. PubMed ID: 32467157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring optimization parameters to increase ssDNA recombineering in Lactococcus lactis and Lactobacillus reuteri.
    Van Pijkeren JP; Neoh KM; Sirias D; Findley AS; Britton RA
    Bioengineered; 2012; 3(4):209-17. PubMed ID: 22750793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligonucleotide recombination: a hidden treasure.
    Swingle B; Markel E; Cartinhour S
    Bioeng Bugs; 2010; 1(4):263-6. PubMed ID: 21327058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial Recombineering: Genome Engineering via Phage-Based Homologous Recombination.
    Pines G; Freed EF; Winkler JD; Gill RT
    ACS Synth Biol; 2015 Nov; 4(11):1176-85. PubMed ID: 25856528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.