BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24384234)

  • 21. A new logic for DNA engineering using recombination in Escherichia coli.
    Zhang Y; Buchholz F; Muyrers JP; Stewart AF
    Nat Genet; 1998 Oct; 20(2):123-8. PubMed ID: 9771703
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved bacterial recombineering by parallelized protein discovery.
    Wannier TM; Nyerges A; Kuchwara HM; Czikkely M; Balogh D; Filsinger GT; Borders NC; Gregg CJ; Lajoie MJ; Rios X; Pál C; Church GM
    Proc Natl Acad Sci U S A; 2020 Jun; 117(24):13689-13698. PubMed ID: 32467157
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome engineering and gene expression control for bacterial strain development.
    Song CW; Lee J; Lee SY
    Biotechnol J; 2015 Jan; 10(1):56-68. PubMed ID: 25155412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of core housekeeping and virulence genes reveals cryptic lineages of Clostridium perfringens that are associated with distinct disease presentations.
    Rooney AP; Swezey JL; Friedman R; Hecht DW; Maddox CW
    Genetics; 2006 Apr; 172(4):2081-92. PubMed ID: 16489222
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using recombineering to generate point mutations: the oligonucleotide-based "hit and fix" method.
    Chang S; Stauffer S; Sharan SK
    Methods Mol Biol; 2012; 852():111-20. PubMed ID: 22328429
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic Engineering by DNA Recombineering.
    Papa LJ; Shoulders MD
    Curr Protoc Chem Biol; 2019 Sep; 11(3):e70. PubMed ID: 31483098
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli.
    Inui M; Suda M; Kimura S; Yasuda K; Suzuki H; Toda H; Yamamoto S; Okino S; Suzuki N; Yukawa H
    Appl Microbiol Biotechnol; 2008 Jan; 77(6):1305-16. PubMed ID: 18060402
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selectional versus mutational mechanism underlying genomic features of bacterial strand asymmetry: a case study in Clostridium acetobutylicum.
    Zhao HL; Xia ZK; Hua ZG; Wei W
    Genet Mol Res; 2015 Mar; 14(1):1911-25. PubMed ID: 25867337
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome engineering of Agrobacterium tumefaciens using the lambda Red recombination system.
    Hu S; Fu J; Huang F; Ding X; Stewart AF; Xia L; Zhang Y
    Appl Microbiol Biotechnol; 2014 Mar; 98(5):2165-72. PubMed ID: 24297480
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum.
    Shao L; Hu S; Yang Y; Gu Y; Chen J; Yang Y; Jiang W; Yang S
    Cell Res; 2007 Nov; 17(11):963-5. PubMed ID: 17971808
    [No Abstract]   [Full Text] [Related]  

  • 31. Genetic engineering using homologous recombination.
    Court DL; Sawitzke JA; Thomason LC
    Annu Rev Genet; 2002; 36():361-88. PubMed ID: 12429697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Development of a new recombineering system by gap repair].
    Li SH; Hong X; Yu M; Chen W; Huang CF; Zhou JG
    Yi Chuan Xue Bao; 2005 May; 32(5):533-7. PubMed ID: 16018266
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic characteristics of toxigenic Clostridia and toxin gene evolution.
    Popoff MR; Bouvet P
    Toxicon; 2013 Dec; 75():63-89. PubMed ID: 23707611
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Yeast oligo-mediated genome engineering (YOGE).
    DiCarlo JE; Conley AJ; Penttilä M; Jäntti J; Wang HH; Church GM
    ACS Synth Biol; 2013 Dec; 2(12):741-9. PubMed ID: 24160921
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome manipulations with bacterial recombineering and site-specific integration in Drosophila.
    Zhang Y; Schreiner W; Rong YS
    Methods Mol Biol; 2014; 1114():11-24. PubMed ID: 24557894
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genomics of clostridial pathogens: implication of extrachromosomal elements in pathogenicity.
    Brüggemann H
    Curr Opin Microbiol; 2005 Oct; 8(5):601-5. PubMed ID: 16125440
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discovery of a novel gene involved in autolysis of Clostridium cells.
    Yang L; Bao G; Zhu Y; Dong H; Zhang Y; Li Y
    Protein Cell; 2013 Jun; 4(6):467-74. PubMed ID: 23702687
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network.
    Lee J; Yun H; Feist AM; Palsson BØ; Lee SY
    Appl Microbiol Biotechnol; 2008 Oct; 80(5):849-62. PubMed ID: 18758767
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ClosTron-mediated engineering of Clostridium.
    Kuehne SA; Heap JT; Cooksley CM; Cartman ST; Minton NP
    Methods Mol Biol; 2011; 765():389-407. PubMed ID: 21815105
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phage recombinases and their applications.
    Murphy KC
    Adv Virus Res; 2012; 83():367-414. PubMed ID: 22748814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.