These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24384234)

  • 41. Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides.
    Warner JR; Reeder PJ; Karimpour-Fard A; Woodruff LB; Gill RT
    Nat Biotechnol; 2010 Aug; 28(8):856-62. PubMed ID: 20639866
    [TBL] [Abstract][Full Text] [Related]  

  • 42. BAC-recombineering for studying plant gene regulation: developmental control and cellular localization of SnRK1 kinase subunits.
    Bitrián M; Roodbarkelari F; Horváth M; Koncz C
    Plant J; 2011 Mar; 65(5):829-42. PubMed ID: 21235649
    [TBL] [Abstract][Full Text] [Related]  

  • 43. PerR acts as a switch for oxygen tolerance in the strict anaerobe Clostridium acetobutylicum.
    Hillmann F; Fischer RJ; Saint-Prix F; Girbal L; Bahl H
    Mol Microbiol; 2008 May; 68(4):848-60. PubMed ID: 18430081
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Comparative genomic reconstruction of regulatory and metabolic networks in bacteria].
    Yang C
    Sheng Wu Gong Cheng Xue Bao; 2010 Oct; 26(10):1349-56. PubMed ID: 21218621
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficient conditional knockout targeting vector construction using co-selection BAC recombineering (CoSBR).
    Newman RJ; Roose-Girma M; Warming S
    Nucleic Acids Res; 2015 Oct; 43(19):e124. PubMed ID: 26089387
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A recombineering pipeline to make conditional targeting constructs.
    Fu J; Teucher M; Anastassiadis K; Skarnes W; Stewart AF
    Methods Enzymol; 2010; 477():125-44. PubMed ID: 20699140
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oligonucleotide recombination enabled site-specific mutagenesis in bacteria.
    Swingle BM
    Methods Mol Biol; 2013; 978():127-32. PubMed ID: 23423893
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Clostridial genomes].
    Shimizu T
    Nihon Rinsho; 2003 Mar; 61 Suppl 3():671-6. PubMed ID: 12718046
    [No Abstract]   [Full Text] [Related]  

  • 49. Recombineering to homogeneity: extension of multiplex recombineering to large-scale genome editing.
    Boyle NR; Reynolds TS; Evans R; Lynch M; Gill RT
    Biotechnol J; 2013 May; 8(5):515-22. PubMed ID: 23436787
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A recombineering-based gene tagging system for Arabidopsis.
    Zhou R; Benavente LM; Stepanova AN; Alonso JM
    Plant J; 2011 May; 66(4):712-23. PubMed ID: 21294796
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Combined overexpression of genes involved in pentose phosphate pathway enables enhanced D-xylose utilization by Clostridium acetobutylicum.
    Jin L; Zhang H; Chen L; Yang C; Yang S; Jiang W; Gu Y
    J Biotechnol; 2014 Mar; 173():7-9. PubMed ID: 24412407
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Strongly Fluorescing Anaerobic Reporter and Protein-Tagging System for
    Streett HE; Kalis KM; Papoutsakis ET
    Appl Environ Microbiol; 2019 Jul; 85(14):. PubMed ID: 31076434
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Substrate and target sequence length influence RecTE(Psy) recombineering efficiency in Pseudomonas syringae.
    Bao Z; Cartinhour S; Swingle B
    PLoS One; 2012; 7(11):e50617. PubMed ID: 23226333
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development and application of an efficient recombineering system for Burkholderia glumae and Burkholderia plantarii.
    Li R; Shi H; Zhao X; Liu X; Duan Q; Song C; Chen H; Zheng W; Shen Q; Wang M; Wang X; Gong K; Yin J; Zhang Y; Li A; Fu J
    Microb Biotechnol; 2021 Jul; 14(4):1809-1826. PubMed ID: 34191386
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High efficiency recombineering in lactic acid bacteria.
    van Pijkeren JP; Britton RA
    Nucleic Acids Res; 2012 May; 40(10):e76. PubMed ID: 22328729
    [TBL] [Abstract][Full Text] [Related]  

  • 56. MODEST: a web-based design tool for oligonucleotide-mediated genome engineering and recombineering.
    Bonde MT; Klausen MS; Anderson MV; Wallin AI; Wang HH; Sommer MO
    Nucleic Acids Res; 2014 Jul; 42(Web Server issue):W408-15. PubMed ID: 24838561
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Shaking up genome engineering.
    Tipton KA; Dueber J
    Nat Biotechnol; 2010 Aug; 28(8):812-3. PubMed ID: 20697406
    [No Abstract]   [Full Text] [Related]  

  • 58. ORBIT for E. coli: kilobase-scale oligonucleotide recombineering at high throughput and high efficiency.
    Saunders SH; Ahmed AM
    Nucleic Acids Res; 2024 May; 52(8):e43. PubMed ID: 38587185
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oligonucleotide recombination in corynebacteria without the expression of exogenous recombinases.
    Krylov AA; Kolontaevsky EE; Mashko SV
    J Microbiol Methods; 2014 Oct; 105():109-15. PubMed ID: 25087479
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of oligonucleotides to construct a conditional targeting vector for porcine IκBα.
    Li H; Song X; Yang F; Bao H; Lu X; Perez-Campo FM; Zhao J
    Mol Med Rep; 2018 Jan; 17(1):653-659. PubMed ID: 29115518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.